Eric Shea-Brown, Ph.D. - Publications

Affiliations: 
Applied Mathematics University of Washington, Seattle, Seattle, WA 
Area:
computational neuroscience
Website:
http://faculty.washington.edu/etsb/eric.html

77 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2023 Liu YH, Baratin A, Cornford J, Mihalas S, Shea-Brown E, Lajoie G. How connectivity structure shapes rich and lazy learning in neural circuits. Arxiv. PMID 37873007  0.527
2023 Zdeblick DN, Shea-Brown ET, Witten DM, Buice MA. Modeling functional cell types in spike train data. Biorxiv : the Preprint Server For Biology. PMID 36909648 DOI: 10.1101/2023.02.28.530327  0.301
2021 Weber AI, Shea-Brown E, Rieke F. Identification of multiple noise sources improves estimation of neural responses across stimulus conditions. Eneuro. PMID 34083382 DOI: 10.1523/ENEURO.0191-21.2021  0.73
2021 Recanatesi S, Farrell M, Lajoie G, Deneve S, Rigotti M, Shea-Brown E. Predictive learning as a network mechanism for extracting low-dimensional latent space representations. Nature Communications. 12: 1417. PMID 33658520 DOI: 10.1038/s41467-021-21696-1  0.732
2021 Gutierrez GJ, Rieke F, Shea-Brown ET. Nonlinear convergence boosts information coding in circuits with parallel outputs. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33593894 DOI: 10.1073/pnas.1921882118  0.801
2020 Stern M, Shea-Brown E. Network Dynamics Governed by Lyapunov Functions: From Memory to Classification. Trends in Neurosciences. PMID 32386741 DOI: 10.1016/J.Tins.2020.04.002  0.316
2019 de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, Oliver M, Feng D, Cain N, Ledochowitsch P, Millman D, Roll K, Garrett M, Keenan T, Kuan L, Mihalas S, ... ... Shea-Brown E, et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience. PMID 31844315 DOI: 10.1038/S41593-019-0550-9  0.606
2019 Recanatesi S, Ocker GK, Buice MA, Shea-Brown E. Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity. Plos Computational Biology. 15: e1006446. PMID 31299044 DOI: 10.1371/Journal.Pcbi.1006446  0.39
2019 Knox JE, Harris KD, Graddis N, Whitesell JD, Zeng H, Harris JA, Shea-Brown E, Mihalas S. High-resolution data-driven model of the mouse connectome. Network Neuroscience (Cambridge, Mass.). 3: 217-236. PMID 30793081 DOI: 10.1162/netn_a_00066  0.723
2018 Cayco-Gajic NA, Zylberberg J, Shea-Brown E. A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data. Entropy (Basel, Switzerland). 20. PMID 33265579 DOI: 10.3390/e20070489  0.708
2018 Kass RE, Amari SI, Arai K, Brown EN, Diekman CO, Diesmann M, Doiron B, Eden UT, Fairhall AL, Fiddyment GM, Fukai T, Grün S, Harrison MT, Helias M, Nakahara H, ... ... Shea-Brown E, et al. Computational Neuroscience: Mathematical and Statistical Perspectives. Annual Review of Statistics and Its Application. 5: 183-214. PMID 30976604 DOI: 10.1146/annurev-statistics-041715-033733  0.599
2018 Brinkman BAW, Rieke F, Shea-Brown E, Buice MA. Predicting how and when hidden neurons skew measured synaptic interactions. Plos Computational Biology. 14: e1006490. PMID 30346943 DOI: 10.1371/Journal.Pcbi.1006490  0.73
2018 Choi H, Pasupathy A, Shea-Brown E. Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion. Neural Computation. 1-49. PMID 29566355 DOI: 10.1162/Neco_A_01072  0.537
2018 Cayco-Gajic N, Zylberberg J, Shea-Brown E. A Moment-Based Maximum Entropy Model for Fitting Higher-Order Interactions in Neural Data Entropy. 20: 489. DOI: 10.3390/E20070489  0.678
2018 Hu Y, Brunton SL, Cain N, Mihalas S, Kutz JN, Shea-Brown E. Feedback through graph motifs relates structure and function in complex networks Physical Review E. 98. DOI: 10.1103/Physreve.98.062312  0.621
2017 Fyall AM, El-Shamayleh Y, Choi H, Shea-Brown E, Pasupathy A. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex. Elife. 6. PMID 28925354 DOI: 10.7554/Elife.25784  0.538
2017 Ocker GK, Hu Y, Buice MA, Doiron B, Josić K, Rosenbaum R, Shea-Brown E. From the statistics of connectivity to the statistics of spike times in neuronal networks. Current Opinion in Neurobiology. 46: 109-119. PMID 28863386 DOI: 10.1016/J.Conb.2017.07.011  0.663
2017 Ocker GK, Josić K, Shea-Brown E, Buice MA. Linking structure and activity in nonlinear spiking networks. Plos Computational Biology. 13: e1005583. PMID 28644840 DOI: 10.1371/Journal.Pcbi.1005583  0.43
2017 Harris KD, Dashevskiy T, Mendoza J, Garcia AJ, Ramirez JM, Shea-Brown E. Different roles for inhibition in the rhythm-generating respiratory network. Journal of Neurophysiology. jn.00174.2017. PMID 28615332 DOI: 10.1152/Jn.00174.2017  0.747
2017 Zylberberg J, Pouget A, Latham PE, Shea-Brown E. Robust information propagation through noisy neural circuits. Plos Computational Biology. 13: e1005497. PMID 28419098 DOI: 10.1371/Journal.Pcbi.1005497  0.736
2017 Fyall AM, El-Shamayleh Y, Choi H, Shea-Brown E, Pasupathy A. Author response: Dynamic representation of partially occluded objects in primate prefrontal and visual cortex Elife. DOI: 10.7554/Elife.25784.031  0.464
2016 Lajoie G, Lin KK, Thivierge JP, Shea-Brown E. Encoding in Balanced Networks: Revisiting Spike Patterns and Chaos in Stimulus-Driven Systems. Plos Computational Biology. 12: e1005258. PMID 27973557 DOI: 10.1371/Journal.Pcbi.1005258  0.652
2016 Brinkman BA, Weber AI, Rieke F, Shea-Brown E. How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits? Plos Computational Biology. 12: e1005150. PMID 27741248 DOI: 10.1371/Journal.Pcbi.1005150  0.795
2016 Sharpee TO, Destexhe A, Kawato M, Sekulić V, Skinner FK, Wójcik DK, Chintaluri C, Cserpán D, Somogyvári Z, Kim JK, Kilpatrick ZP, Bennett MR, Josić K, Elices I, Arroyo D, ... ... Shea-Brown E, et al. 25th Annual Computational Neuroscience Meeting: CNS-2016 Bmc Neuroscience. 17: 54. PMID 27534393 DOI: 10.1186/S12868-016-0283-6  0.733
2016 Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F. Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code. Neuron. 89: 369-83. PMID 26796691 DOI: 10.1016/J.Neuron.2015.11.019  0.816
2015 Zylberberg J, Shea-Brown E. Input nonlinearities can shape beyond-pairwise correlations and improve information transmission by neural populations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 92: 062707. PMID 26764727 DOI: 10.1103/Physreve.92.062707  0.738
2015 Leen DA, Shea-Brown E. A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons. Journal of Mathematical Neuroscience. 5: 30. PMID 26265217 DOI: 10.1186/S13408-015-0030-9  0.492
2015 Schwemmer MA, Fairhall AL, Denéve S, Shea-Brown ET. Constructing Precisely Computing Networks with Biophysical Spiking Neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 10112-34. PMID 26180189 DOI: 10.1523/Jneurosci.4951-14.2015  0.673
2015 Cayco-Gajic NA, Zylberberg J, Shea-Brown E. Triplet correlations among similarly tuned cells impact population coding. Frontiers in Computational Neuroscience. 9: 57. PMID 26042024 DOI: 10.3389/Fncom.2015.00057  0.738
2015 Cayco-Gajic NA, Zylberberg J, Shea-Brown E. Triplet correlations among similarly tuned cells impact population coding Frontiers in Computational Neuroscience. 9. DOI: 10.3389/fncom.2015.00057  0.66
2015 Cayco-Gajic A, Zylberberg J, Shea-Brown E. Curvature of dendritic nonlinearities modulates higher-order spiking correlations Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P227  0.732
2015 Zylberberg J, Cafaro J, Turner M, Rieke F, Shea-Brown E. Limited range correlations, when modulated by firing rate, can substantially improve neural population coding Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-O16  0.818
2014 Lajoie G, Thivierge JP, Shea-Brown E. Structured chaos shapes spike-response noise entropy in balanced neural networks. Frontiers in Computational Neuroscience. 8: 123. PMID 25324772 DOI: 10.3389/Fncom.2014.00123  0.665
2014 Hu Y, Trousdale J, Josić K, Shea-Brown E. Local paths to global coherence: cutting networks down to size. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 89: 032802. PMID 24730894 DOI: 10.1103/Physreve.89.032802  0.331
2014 Hu Y, Zylberberg J, Shea-Brown E. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes. Plos Computational Biology. 10: e1003469. PMID 24586128 DOI: 10.1371/Journal.Pcbi.1003469  0.747
2014 Barreiro AK, Gjorgjieva J, Rieke F, Shea-Brown E. When do microcircuits produce beyond-pairwise correlations? Frontiers in Computational Neuroscience. 8: 10. PMID 24567715 DOI: 10.3389/Fncom.2014.00010  0.81
2014 Zylberberg J, Shea-Brown E. When does recurrent connectivity improve neural population coding? Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P49  0.756
2014 Lajoie G, Thivierge J, Shea-Brown E. Structured chaos shapes joint spike-response noise entropy in temporally driven balanced networks Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P48  0.686
2014 Brinkman BAW, Weber A, Rieke F, Shea-Brown E. Noise- and stimulus-dependence of the optimal encoding nonlinearities in a simple ON/OFF retinal circuit model Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P47  0.741
2013 Trousdale J, Hu Y, Shea-Brown E, Josi? K. A generative spike train model with time-structured higher order correlations. Frontiers in Computational Neuroscience. 7: 84. PMID 23908626 DOI: 10.3389/Fncom.2013.00084  0.443
2013 Lajoie G, Lin KK, Shea-Brown E. Chaos and reliability in balanced spiking networks with temporal drive. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 87: 052901. PMID 23767592 DOI: 10.1103/Physreve.87.052901  0.623
2013 Cayco-Gajic NA, Shea-Brown E. Neutral stability, rate propagation, and critical branching in feedforward networks. Neural Computation. 25: 1768-806. PMID 23607560 DOI: 10.1162/Neco_A_00461  0.404
2013 Cain N, Barreiro AK, Shadlen M, Shea-Brown E. Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity. Journal of Neurophysiology. 109: 2542-59. PMID 23446688 DOI: 10.1152/Jn.00976.2012  0.785
2013 Cain N, Shea-Brown E. Impact of correlated neural activity on decision-making performance. Neural Computation. 25: 289-327. PMID 23148409 DOI: 10.1162/Neco_A_00398  0.674
2013 Zylberberg J, Turner M, Hu Y, Cafaro J, Schwartz G, Rieke F, Shea-Brown E. Consistency requirements determine optimal noise correlations in neural populations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-F1  0.814
2013 Hu Y, Trousdale J, Josić K, Shea-Brown E. Motif statistics and spike correlations in neuronal networks Journal of Statistical Mechanics: Theory and Experiment. 2013. DOI: 10.1088/1742-5468/2013/03/P03012  0.387
2012 Fairhall A, Shea-Brown E, Barreiro A. Information theoretic approaches to understanding circuit function. Current Opinion in Neurobiology. 22: 653-9. PMID 22795220 DOI: 10.1016/J.Conb.2012.06.005  0.761
2012 Goldwyn JH, Rubinstein JT, Shea-Brown E. A point process framework for modeling electrical stimulation of the auditory nerve. Journal of Neurophysiology. 108: 1430-52. PMID 22673331 DOI: 10.1152/Jn.00095.2012  0.789
2012 Barreiro AK, Thilo EL, Shea-Brown E. A-current and type I/type II transition determine collective spiking from common input. Journal of Neurophysiology. 108: 1631-45. PMID 22673330 DOI: 10.1152/Jn.00928.2011  0.769
2012 Cain N, Shea-Brown E. Computational models of decision making: integration, stability, and noise. Current Opinion in Neurobiology. 22: 1047-53. PMID 22591667 DOI: 10.1016/J.Conb.2012.04.013  0.654
2012 Trousdale J, Hu Y, Shea-Brown E, Josić K. Impact of network structure and cellular response on spike time correlations. Plos Computational Biology. 8: e1002408. PMID 22457608 DOI: 10.1371/Journal.Pcbi.1002408  0.426
2012 Leen DA, Shea-Brown E. A simple mechanism for higher-order correlations in integrate-and-fire neurons Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P45  0.465
2012 Cain N, Shea-Brown E. Speed and accuracy in decision making: input correlations and performance Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P44  0.666
2011 Goldwyn JH, Shea-Brown E. The what and where of adding channel noise to the Hodgkin-Huxley equations. Plos Computational Biology. 7: e1002247. PMID 22125479 DOI: 10.1371/Journal.Pcbi.1002247  0.765
2011 Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 83: 041908. PMID 21599202 DOI: 10.1103/Physreve.83.041908  0.779
2011 Matell MS, Shea-Brown E, Gooch C, Wilson AG, Rinzel J. A heterogeneous population code for elapsed time in rat medial agranular cortex. Behavioral Neuroscience. 125: 54-73. PMID 21319888 DOI: 10.1037/A0021954  0.713
2011 Lajoie G, Shea-Brown E. Shared inputs, entrainment, and desynchrony in elliptic bursters: From slow passage to discontinuous circle maps Siam Journal On Applied Dynamical Systems. 10: 1232-1271. DOI: 10.1137/100811726  0.645
2011 Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E. Publisher’s Note: Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons [Phys. Rev. E83, 041908 (2011)] Physical Review E. 83. DOI: 10.1103/Physreve.83.049902  0.774
2010 Barreiro AK, Shea-Brown E, Thilo EL. Time scales of spike-train correlation for neural oscillators with common drive. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 81: 011916. PMID 20365408 DOI: 10.1103/Physreve.81.011916  0.754
2010 Goldwyn JH, Shea-Brown E, Rubinstein JT. Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis. Journal of Computational Neuroscience. 28: 405-24. PMID 20177761 DOI: 10.1007/S10827-010-0224-9  0.788
2010 Cain N, Barreiro A, Shadlen M, Shea-Brown E. The effect of “robust” integrator dynamics on decision-making performance Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P97  0.801
2010 Barreiro AK, Shea-Brown ET, Rieke FM, Gjorgjieva J. When are microcircuits well-modeled by maximum entropy methods? Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P65  0.808
2010 Goldwyn JH, Shea-Brown E. Adaptation in electric hearing: analysis of level and amplitude modulation encoding Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P166  0.799
2009 Josić K, Shea-Brown E, Doiron B, de la Rocha J. Stimulus-dependent correlations and population codes. Neural Computation. 21: 2774-804. PMID 19635014 DOI: 10.1162/Neco.2009.10-08-879  0.796
2009 Lin KK, Shea-Brown E, Young LS. Spike-time reliability of layered neural oscillator networks. Journal of Computational Neuroscience. 27: 135-60. PMID 19156509 DOI: 10.1007/S10827-008-0133-3  0.417
2009 Lin KK, Shea-Brown E, Young LS. Reliability of layered neural oscillator networks Communications in Mathematical Sciences. 7: 239-247. DOI: 10.4310/Cms.2009.V7.N1.A12  0.304
2009 Lin KK, Shea-Brown E, Young LS. Reliability of coupled oscillators Journal of Nonlinear Science. 19: 497-545. DOI: 10.1007/S00332-009-9042-5  0.344
2008 Shea-Brown E, Gilzenrat MS, Cohen JD. Optimization of decision making in multilayer networks: the role of locus coeruleus. Neural Computation. 20: 2863-94. PMID 18624653 DOI: 10.1162/Neco.2008.03-07-487  0.369
2008 Shea-Brown E, Josić K, de la Rocha J, Doiron B. Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Physical Review Letters. 100: 108102. PMID 18352234 DOI: 10.1103/Physrevlett.100.108102  0.808
2008 Goldwyn JH, Shea-Brown E. Amplitude modulation discrimination in a model of the electrically stimulated auditory nerve Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P119  0.761
2007 de la Rocha J, Doiron B, Shea-Brown E, Josić K, Reyes A. Correlation between neural spike trains increases with firing rate. Nature. 448: 802-6. PMID 17700699 DOI: 10.1038/Nature06028  0.814
2007 Feng XJ, Shea-Brown E, Greenwald B, Kosut R, Rabitz H. Optimal deep brain stimulation of the subthalamic nucleus--a computational study. Journal of Computational Neuroscience. 23: 265-82. PMID 17484043 DOI: 10.1007/S10827-007-0031-0  0.376
2006 Coombes S, Doiron B, Josić K, Shea-Brown E. Towards blueprints for network architecture, biophysical dynamics and signal transduction. Philosophical Transactions. Series a, Mathematical, Physical, and Engineering Sciences. 364: 3301-18. PMID 17090461 DOI: 10.1098/Rsta.2006.1903  0.653
2006 Shea-Brown E, Rinzel J, Rakitin BC, Malapani C. A firing rate model of Parkinsonian deficits in interval timing. Brain Research. 1070: 189-201. PMID 16413510 DOI: 10.1016/J.Brainres.2005.10.070  0.701
2006 Moehlis J, Shea-Brown E, Rabitz H. Optimal inputs for phase models of spiking neurons Journal of Computational and Nonlinear Dynamics. 1: 358-367. DOI: 10.1115/1.2338654  0.465
2006 Golubitsky M, Josić K, Shea-Brown E. Winding numbers and average frequencies in phase oscillator networks Journal of Nonlinear Science. 16: 201-231. DOI: 10.1007/S00332-005-0696-3  0.307
2005 Holmes P, Shea-Brown E, Moehlis J, Bogacz R, Gao J, Aston-Jones G, Clayton E, Rajkowski J, Cohen JD. Optimal decisions: From neural spikes, through stochastic differential equations, to behavior Ieice Transactions On Fundamentals of Electronics, Communications and Computer Sciences. 2496-2502. DOI: 10.1093/Ietfec/E88-A.10.2496  0.628
Show low-probability matches.