Kenneth A. Fields - Publications

Affiliations: 
University of Miami, Coral Gables, FL 
Area:
Microbiology Biology

31 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Fields KA, Bodero MD, Scanlon KR, Jewett TJ, Wolf K. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infection and Immunity. 90: e0045322. PMID 36350146 DOI: 10.1128/iai.00453-22  0.303
2021 Keb G, Ferrell J, Scanlon KR, Jewett TJ, Fields KA. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. Mbio. 12. PMID 33468693 DOI: 10.1128/mBio.02861-20  0.314
2020 Keb G, Fields KA. An Ancient Molecular Arms Race: vs. Membrane Attack Complex/Perforin (MACPF) Domain Proteins. Frontiers in Immunology. 11: 1490. PMID 32760406 DOI: 10.3389/fimmu.2020.01490  0.407
2020 Ghosh S, Ruelke EA, Ferrell JC, Bodero MD, Fields KA, Jewett TJ. FRAEM-mediated gene deletion indicates a requirement for Tarp during in vivo infectivity and reveals a specific role for the C-terminus during cellular invasion. Infection and Immunity. PMID 32152196 DOI: 10.1128/IAI.00841-19  0.356
2017 McKuen MJ, Mueller KE, Bae YS, Fields KA. FRAEM reveals a role for C. trachomatis TmeA in invasion that is independent of host AHNAK. Infection and Immunity. PMID 28970272 DOI: 10.1128/IAI.00640-17  0.466
2016 McKuen M, Fields K. 30: The AHNAK-dependent role of chlamydia trachomatis type iii effector protein CT694 American Journal of Obstetrics and Gynecology. 215: S840-S841. DOI: 10.1016/j.ajog.2016.09.057  0.414
2014 Mueller KE, Plano GV, Fields KA. New frontiers in type III secretion biology: the Chlamydia perspective. Infection and Immunity. 82: 2-9. PMID 24126521 DOI: 10.1128/Iai.00917-13  0.371
2013 Shrestha N, Boucher J, Bahnan W, Clark ES, Rosqvist R, Fields KA, Khan WN, Schesser K. The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens. Plos One. 8: e68754. PMID 23874749 DOI: 10.1371/Journal.Pone.0068754  0.468
2013 Engström P, Nguyen BD, Normark J, Nilsson I, Bastidas RJ, Gylfe A, Elofsson M, Fields KA, Valdivia RH, Wolf-Watz H, Bergström S. Mutations in hemG mediate resistance to salicylidene acylhydrazides, demonstrating a novel link between protoporphyrinogen oxidase (HemG) and Chlamydia trachomatis infectivity. Journal of Bacteriology. 195: 4221-30. PMID 23852872 DOI: 10.1128/Jb.00506-13  0.399
2013 Fields KA, McCormack R, de Armas LR, Podack ER. Perforin-2 restricts growth of Chlamydia trachomatis in macrophages. Infection and Immunity. 81: 3045-54. PMID 23753625 DOI: 10.1128/Iai.00497-13  0.475
2013 McKuen MJ, Dahl G, Fields KA. Assessing a potential role of host Pannexin 1 during Chlamydia trachomatis infection. Plos One. 8: e63732. PMID 23700432 DOI: 10.1371/Journal.Pone.0063732  0.437
2013 Wolf K, Fields KA. Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. Journal of Immunology (Baltimore, Md. : 1950). 190: 1695-701. PMID 23303668 DOI: 10.4049/Jimmunol.1202443  0.434
2012 Shrestha N, Bahnan W, Wiley DJ, Barber G, Fields KA, Schesser K. Eukaryotic initiation factor 2 (eIF2) signaling regulates proinflammatory cytokine expression and bacterial invasion. The Journal of Biological Chemistry. 287: 28738-44. PMID 22761422 DOI: 10.1074/Jbc.M112.375915  0.385
2012 Bullock HD, Hower S, Fields KA. Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins. The Journal of Biological Chemistry. 287: 28078-86. PMID 22711538 DOI: 10.1074/Jbc.M112.386904  0.646
2011 Betts-Hampikian HJ, Fields KA. Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development. Journal of Bacteriology. 193: 6950-9. PMID 22001510 DOI: 10.1128/Jb.05163-11  0.417
2011 Fields KA, Heinzen RA, Carabeo R. The obligate intracellular lifestyle. Frontiers in Microbiology. 2: 99. PMID 21747803 DOI: 10.3389/Fmicb.2011.00099  0.46
2011 Chellas-Géry B, Wolf K, Tisoncik J, Hackstadt T, Fields KA. Biochemical and localization analyses of putative type III secretion translocator proteins CopB and CopB2 of Chlamydia trachomatis reveal significant distinctions. Infection and Immunity. 79: 3036-45. PMID 21606186 DOI: 10.1128/Iai.00159-11  0.522
2011 Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, Plano GV. Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. Journal of Bacteriology. 193: 3490-6. PMID 21571996 DOI: 10.1128/Jb.00203-11  0.435
2010 Betts-Hampikian HJ, Fields KA. The Chlamydial Type III Secretion Mechanism: Revealing Cracks in a Tough Nut. Frontiers in Microbiology. 1: 114. PMID 21738522 DOI: 10.3389/Fmicb.2010.00114  0.382
2009 Hower S, Wolf K, Fields KA. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Molecular Microbiology. 72: 1423-37. PMID 19460098 DOI: 10.1111/J.1365-2958.2009.06732.X  0.667
2009 Wolf K, Plano GV, Fields KA. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cellular Microbiology. 11: 769-79. PMID 19159390 DOI: 10.1111/J.1462-5822.2009.01290.X  0.489
2009 Betts HJ, Wolf K, Fields KA. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Current Opinion in Microbiology. 12: 81-7. PMID 19138553 DOI: 10.1016/J.Mib.2008.11.009  0.461
2008 Betts HJ, Twiggs LE, Sal MS, Wyrick PB, Fields KA. Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. Journal of Bacteriology. 190: 1680-90. PMID 18165300 DOI: 10.1128/Jb.01671-07  0.427
2007 Chellas-Géry B, Linton CN, Fields KA. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Cellular Microbiology. 9: 2417-30. PMID 17532760 DOI: 10.1111/J.1462-5822.2007.00970.X  0.601
2006 Wolf K, Betts HJ, Chellas-Géry B, Hower S, Linton CN, Fields KA. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Molecular Microbiology. 61: 1543-55. PMID 16968227 DOI: 10.1111/J.1365-2958.2006.05347.X  0.638
2005 Clifton DR, Dooley CA, Grieshaber SS, Carabeo RA, Fields KA, Hackstadt T. Tyrosine phosphorylation of the chlamydial effector protein Tarp is species specific and not required for recruitment of actin. Infection and Immunity. 73: 3860-8. PMID 15972471 DOI: 10.1128/IAI.73.7.3860-3868.2005  0.344
2004 Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proceedings of the National Academy of Sciences of the United States of America. 101: 10166-71. PMID 15199184 DOI: 10.1073/Pnas.0402829101  0.492
2002 Fields KA, Fischer E, Hackstadt T. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA. Infection and Immunity. 70: 3816-23. PMID 12065525 DOI: 10.1128/Iai.70.7.3816-3823.2002  0.468
2000 Fields KA, Hackstadt T. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism Molecular Microbiology. 38: 1048-1060. PMID 11123678 DOI: 10.1046/j.1365-2958.2000.02212.x  0.401
1999 Fields KA, Nilles ML, Cowan C, Straley SC. Virulence role of V antigen of Yersinia pestis at the bacterial surface Infection and Immunity. 67: 5395-5408. PMID 10496922 DOI: 10.1128/Iai.67.10.5395-5408.1999  0.305
1999 Fields KA, Straley SC. LcrV of Yersinia pestis enters infected eukaryotic cells by a virulence plasmid-independent mechanism Infection and Immunity. 67: 4801-4813. PMID 10456934 DOI: 10.1128/Iai.67.9.4801-4813.1999  0.341
Show low-probability matches.