Ingrid Fritsch - Publications

Affiliations: 
1992- Chemistry and Biochemistry University of Arkansas, Fayetteville, Fayetteville, AR, United States 
Area:
Analytical Chemistry
Website:
https://fulbright.uark.edu/departments/chemistry/directory/index/uid/ifritsch/name/Ingrid-Fritsch/

54 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Lotfi Marchoubeh M, Cobb SJ, Abrego Tello M, Hu M, Jaquins-Gerstl A, Robbins EM, Macpherson JV, Michael AC, Fritsch I. Miniaturized probe on polymer SU-8 with array of individually addressable microelectrodes for electrochemical analysis in neural and other biological tissues. Analytical and Bioanalytical Chemistry. PMID 33961102 DOI: 10.1007/s00216-021-03327-2  0.737
2019 Haehnel V, Khan FZ, Mutschke G, Cierpka C, Uhlemann M, Fritsch I. Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems. Scientific Reports. 9: 5103. PMID 30911104 DOI: 10.1038/S41598-019-41284-0  0.757
2019 Khan FZ, Fritsch I. Chip-Scale Electrodeposition and Analysis of Poly(3,4-ethylenedioxythiophene) (PEDOT) Films for Enhanced and Sustained Microfluidics Using DC-Redox-Magnetohydrodynamics Journal of the Electrochemical Society. 166: H615-H627. DOI: 10.1149/2.0811913Jes  0.676
2018 Khan FZ, Hutcheson JA, Hunter CJ, Powless AJ, Benson DM, Fritsch I, Muldoon TJ. Redox-Magnetohydrodynamically controlled fluid flow with poly(3,4-ethylenedioxythiophene) (PEDOT) coupled to an epitaxial light sheet confocal microscope for image cytometry applications. Analytical Chemistry. PMID 29873231 DOI: 10.1021/Acs.Analchem.7B05312  0.731
2016 Hu M, Fritsch I. Application of Electrochemical Redox Cycling: Toward Differentiation of Dopamine and Norepinephrine. Analytical Chemistry. PMID 27167698 DOI: 10.1021/Acs.Analchem.6B00427  0.724
2016 Nash CK, Fritsch I. Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution. Analytical Chemistry. 88: 1601-9. PMID 26631414 DOI: 10.1021/Acs.Analchem.5B03182  0.774
2016 Sahore V, Kreidermacher A, Khan FZ, Fritsch I. Visualization and Measurement of Natural Convection from Electrochemically-Generated Density Gradients at Concentric Microdisk and Ring Electrodes in a Microfluidic System Journal of the Electrochemical Society. 163: H3135-H3144. DOI: 10.1149/2.0181604Jes  0.754
2016 Hutcheson JA, Khan FZ, Powless AJ, Benson D, Hunter C, Fritsch I, Muldoon TJ. A light sheet confocal microscope for image cytometry with a variable linear slit detector Proceedings of Spie - the International Society For Optical Engineering. 9720. DOI: 10.1117/12.2211164  0.73
2015 Hu M, Fritsch I. Redox cycling behavior of individual and binary mixtures of catecholamines at gold microband electrode arrays. Analytical Chemistry. 87: 2029-32. PMID 25609159 DOI: 10.1021/Ac5042022  0.704
2014 Sahore V, Fritsch I. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses. Analytical Chemistry. 86: 9405-11. PMID 25171501 DOI: 10.1021/Ac502014T  0.808
2014 Sahore V, Fritsch I. Microfluidic rotational flow generated by redox-magnetohydrodynamics (MHD) under laminar conditions using concentric disk and ring microelectrodes Microfluidics and Nanofluidics. 18: 159-166. DOI: 10.1007/S10404-014-1427-6  0.809
2013 Sahore V, Fritsch I. Flat flow profiles achieved with microfluidics generated by redox-magnetohydrodynamics. Analytical Chemistry. 85: 11809-16. PMID 24274592 DOI: 10.1021/Ac402476V  0.829
2013 Gao F, Kreidermacher A, Fritsch I, Heyes CD. 3D imaging of flow patterns in an internally-pumped microfluidic device: redox magnetohydrodynamics and electrochemically-generated density gradients. Analytical Chemistry. 85: 4414-22. PMID 23537496 DOI: 10.1021/Ac3036926  0.773
2013 Aggarwal A, Hu M, Fritsch I. Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array. Analytical and Bioanalytical Chemistry. 405: 3859-69. PMID 23397090 DOI: 10.1007/S00216-013-6738-Z  0.787
2013 Scrape PG, Gerne MD, Weston MC, Fritsch I. Redox-magnetohydrodynamics for microfluidic control: Remote from active electrodes and their diffusion layers Journal of the Electrochemical Society. 160: H338-H343. DOI: 10.1149/2.076306Jes  0.733
2012 Weston MC, Nash CK, Homesley JJ, Fritsch I. Maximizing flow velocities in redox-magnetohydrodynamic microfluidics using the transient faradaic current. Analytical Chemistry. 84: 9402-9. PMID 23057608 DOI: 10.1021/Ac302063A  0.837
2012 Cheah LT, Fritsch I, Haswell SJ, Greenman J. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications. Biotechnology and Bioengineering. 109: 1827-34. PMID 22271160 DOI: 10.1002/Bit.24426  0.483
2012 Ensafi AA, Nazari Z, Fritsch I. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(ii), cadmium(ii) and zinc(ii) ions using 1,4-benzoquinone as an alternative pumping species Analyst. 137: 424-431. DOI: 10.1039/C1An15700K  0.38
2012 Weston MC, Fritsch I. Manipulating fluid flow on a chip through controlled-current redox magnetohydrodynamics Sensors and Actuators, B: Chemical. 173: 935-944. DOI: 10.1016/J.Snb.2012.07.006  0.767
2011 Sen D, Isaac KM, Leventis N, Fritsch I. Investigation of transient redox electrochemical MHD using numerical simulations International Journal of Heat and Mass Transfer. 54: 5368-5378. DOI: 10.1016/J.Ijheatmasstransfer.2011.08.006  0.42
2011 Sen D, Isaac KM, Leventis N, Fritsch I. Simulation of electrochemical MHD induced flow in a microfluidic cell without channels 6th Aiaa Theoretical Fluid Mechanics Conference 0.309
2010 Fakunle ES, Fritsch I. Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays. Analytical and Bioanalytical Chemistry. 398: 2605-15. PMID 20803005 DOI: 10.1007/S00216-010-4098-5  0.831
2010 Weston MC, Nash CK, Fritsch I. Redox-magnetohydrodynamic microfluidics without channels and compatible with electrochemical detection under immunoassay conditions. Analytical Chemistry. 82: 7068-72. PMID 20681513 DOI: 10.1021/Ac101377A  0.828
2010 Weston MC, Gerner MD, Fritsch I. Magnetic fields for fluid motion. Analytical Chemistry. 82: 3411-8. PMID 20380431 DOI: 10.1021/Ac901783N  0.744
2010 Anderson EC, Weston MC, Fritsch I. Investigations of redox magnetohydrodynamic fluid flow at microelectrode arrays using microbeads. Analytical Chemistry. 82: 2643-51. PMID 20210341 DOI: 10.1021/Ac9020177  0.809
2010 Lewis PM, Sheridan LB, Gawley RE, Fritsch I. Signal amplification in a microchannel from redox cycling with varied electroactive configurations of an individually addressable microband electrode array. Analytical Chemistry. 82: 1659-68. PMID 20108925 DOI: 10.1021/Ac901066P  0.5
2010 Ensafi AA, Nazari Z, Fritsch I. Highly Sensitive Differential Pulse Voltammetric Determination of Cd, Zn and Pb Ions in Water Samples Using Stable Carbon-Based Mercury Thin-Film Electrode Electroanalysis. 22: 2551-2557. DOI: 10.1002/Elan.201000246  0.376
2010 Ensafi AA, Ring AC, Fritsch I. Highly sensitive voltammetric speciation and determination of inorganic arsenic in water and alloy samples using ammonium 2-amino-1-cyclopentene-1-dithiocarboxylate Electroanalysis. 22: 1175-1185. DOI: 10.1002/Elan.200900347  0.347
2007 Fritsch I, Aguilar ZP. Advantages of downsizing electrochemical detection for DNA assays. Analytical and Bioanalytical Chemistry. 387: 159-63. PMID 17109133 DOI: 10.1007/S00216-006-0912-5  0.591
2007 Etienne M, Dierkes P, Erichsen T, Schuhmann W, Fritsch I. Constant-distance mode scanning potentiometry. High resolution pH measurements in three-dimensions Electroanalysis. 19: 318-323. DOI: 10.1002/Elan.200603735  0.452
2006 Fakunle ES, Aguilar ZP, Shultz JL, Toland AD, Fritsch I. Evaluation of screen-printed gold on low-temperature co-fired ceramic as a substrate for the immobilization of electrochemical immunoassays. Langmuir : the Acs Journal of Surfaces and Colloids. 22: 10844-53. PMID 17129069 DOI: 10.1021/La061304N  0.785
2006 Weston MC, Anderson EC, Arumugam PU, Narasimhan PY, Fritsch I. Redox magnetohydrodynamic enhancement of stripping voltammetry: toward portable analysis using disposable electrodes, permanent magnets, and small volumes. The Analyst. 131: 1322-31. PMID 17124540 DOI: 10.1039/B605139A  0.83
2006 Etienne M, Anderson EC, Evans SR, Schuhmann W, Fritsch I. Feedback-independent Pt nanoelectrodes for shear force-based constant-distance mode scanning electrochemical microscopy. Analytical Chemistry. 78: 7317-24. PMID 17037938 DOI: 10.1021/Ac061310O  0.501
2006 Anderson EC, Fritsch I. Factors influencing redox magnetohydrodynamic-induced convection for enhancement of stripping analysis. Analytical Chemistry. 78: 3745-51. PMID 16737232 DOI: 10.1021/Ac060001V  0.486
2006 Arumugam PU, Fakunle ES, Anderson EC, Evans SR, King KG, Aguilar ZP, Carter CS, Fritsch I. Characterization and pumping: Redox magnetohydrodynamics in a microfluidic channel Journal of the Electrochemical Society. 153. DOI: 10.1149/1.2352040  0.821
2006 Aguilar ZP, Arumugam P, Fritsch I. Study of magnetohydrodynamic driven flow through LTCC channel with self-contained electrodes Journal of Electroanalytical Chemistry. 591: 201-209. DOI: 10.1016/J.Jelechem.2006.04.019  0.817
2005 Arumugam PU, Clark EA, Fritsch I. Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics. Analytical Chemistry. 77: 1167-71. PMID 15859001 DOI: 10.1021/Ac048849B  0.802
2005 Arumugam PU, Clark EA, Fritsch I. Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics Analytical Chemistry. 77: 1167-1171. DOI: 10.1021/ac048849b  0.796
2004 Clark EA, Fritsch I. Anodic stripping voltammetry enhancement by redox magnetohydrodynamics. Analytical Chemistry. 76: 2415-8. PMID 15080758 DOI: 10.1021/Ac0354490  0.769
2004 Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W. Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Analytical Chemistry. 76: 458-63. PMID 14719897 DOI: 10.1021/Ac0346860  0.68
2004 Arumugam PU, Belle AJ, Fritsch I. Inducing convection in solutions on a small scale: Electrochemistry at microelectrodes embedded in permanent magnets Ieee Transactions On Magnetics. 40: 3063-3065. DOI: 10.1109/Tmag.2004.828978  0.74
2004 Evans SR, Fritsch I. A Self-Contained Microelectrochemical Cavity System Comprised of a Polymer and Phospholipid Membrane Suspended over a Picoliter Volume Electroanalysis. 16: 45-53. DOI: 10.1002/Elan.200302932  0.363
2003 Aguilar ZP, Fritsch I. Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA. Analytical Chemistry. 75: 3890-7. PMID 14572058 DOI: 10.1021/Ac026211Z  0.592
2003 Vandaveer IV WR, Woodward DJ, Fritsch I. Redox cycling measurements of a model compound and dopamine in ultrasmall volumes with a self-contained microcavity device Electrochimica Acta. 48: 3341-3348. DOI: 10.1016/S0013-4686(03)00403-1  0.511
2002 Vandaveer WR, Fritsch I. Measurement of ultrasmall volumes using anodic stripping voltammetry. Analytical Chemistry. 74: 3575-8. PMID 12139070 DOI: 10.1021/Ac011036S  0.783
2002 Aguilar ZP, Vandaveer WR, Fritsch I. Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system. Analytical Chemistry. 74: 3321-9. PMID 12139035 DOI: 10.1021/Ac0110348  0.803
1999 Henry CS, Fritsch I. Microfabricated recessed microdisk electrodes:  characterization in static and convective solutions. Analytical Chemistry. 71: 550-6. PMID 21662713 DOI: 10.1021/ac980375r  0.611
1999 Henry CS, Fritsch I. Microcavities containing individually addressable recessed microdisk and tubular nanoband electrodes Journal of the Electrochemical Society. 146: 3367-3373. DOI: 10.1149/1.1392479  0.632
1999 Henry CS, Fritsch I. Microfabricated recessed microdisk electrodes: Characterization in static and convective solutions Analytical Chemistry. 71: 550-556. DOI: 10.1021/ac980375r  0.611
1998 Ha J, Henry CS, Fritsch I. Formation and characterization of supported hexadecanethiol/dimyristoyl phosphatidylcholine hybrid bilayers containing gramicidin D Langmuir. 14: 5850-5855. DOI: 10.1021/La971392Z  0.54
1998 Nagale MP, Fritsch I. Individually Addressable, Submicrometer Band Electrode Arrays. 2. Electrochemical Characterization Analytical Chemistry. 70: 2908-2913. DOI: 10.1021/Ac971041P  0.458
1998 Nagale MP, Fritsch I. Individually Addressable, Submicrometer Band Electrode Arrays. 1. Fabrication from Multilayered Materials Analytical Chemistry. 70: 2902-2907. DOI: 10.1021/Ac971040X  0.429
1997 Scott JR, Baker LS, Everett WR, Wilkins CL, Fritsch I. Laser Desorption Fourier Transform Mass Spectrometry Exchange Studies of Air-Oxidized Alkanethiol Self-Assembled Monolayers on Gold Analytical Chemistry. 69: 2636-2639. DOI: 10.1021/Ac9609642  0.307
1996 Sreenivas G, Ang SS, Fritsch I, Brown WD, Gerhardt GA, Woodward DJ. Fabrication and characterization of sputtered-carbon microelectrode arrays. Analytical Chemistry. 68: 1858-64. PMID 21619097 DOI: 10.1021/Ac9508816  0.331
Show low-probability matches.