Anita T. Layton - Publications

Affiliations: 
Mathematics Duke University, Durham, NC 
Area:
Mathematics

119 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Hu R, McDonough AA, Layton AT. Sex differences in solute and water handling in the human kidney: Modeling and functional implications. Iscience. 24: 102667. PMID 34169242 DOI: 10.1016/j.isci.2021.102667  0.304
2020 Hu R, McDonough AA, Layton AT. Sex-Differences in Solute Transport Along the Nephrons: Effects of Na Transport Inhibition. American Journal of Physiology. Renal Physiology. PMID 32744084 DOI: 10.1152/Ajprenal.00240.2020  0.373
2020 Prieto-García L, Vicente-Vicente L, Blanco-Gozalo V, Hidalgo-Thomas O, García-Macías MC, Kurtz A, Layton AT, Sanz AB, Morales AI, Martínez-Salgado C, Pericacho M, Sancho-Martínez SM, López-Hernández FJ. Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury. Laboratory Investigation; a Journal of Technical Methods and Pathology. PMID 32719543 DOI: 10.1038/S41374-020-0473-9  0.391
2020 Ahmed S, Layton AT. Sex-Specific Computational Models for Blood Pressure Regulation in the Rat. American Journal of Physiology. Renal Physiology. PMID 32036698 DOI: 10.1152/Ajprenal.00376.2019  0.411
2019 Edwards A, Palm F, Layton AT. A Model of Mitochondrial O Consumption and ATP Generation in Rat Proximal Tubule Cells. American Journal of Physiology. Renal Physiology. PMID 31790302 DOI: 10.1152/Ajprenal.00330.2019  0.356
2019 Hu R, McDonough AA, Layton AT. Functional implications of the differences in transporters' abundance along the rat nephron: modeling and analysis. American Journal of Physiology. Renal Physiology. PMID 31566436 DOI: 10.1152/Ajprenal.00352.2019  0.364
2019 Layton AT. Solute and Water Transport along an Inner-medullary Collecting Duct Undergoing Peristaltic Contractions. American Journal of Physiology. Renal Physiology. PMID 31313955 DOI: 10.1152/Ajprenal.00265.2019  0.408
2019 Fattah H, Layton A, Vallon V. How Do Kidneys Adapt to a Deficit or Loss in Nephron Number? Physiology (Bethesda, Md.). 34: 189-197. PMID 30968755 DOI: 10.1152/Physiol.00052.2018  0.307
2019 Ahmed S, Hu R, Leete J, Layton AT. Understanding Sex Differences in Long-term Blood Pressure Regulation: Insights from Experimental Studies and Computational Modeling. American Journal of Physiology. Heart and Circulatory Physiology. PMID 30875261 DOI: 10.1152/Ajpheart.00035.2019  0.33
2019 Layton AT, Layton HE. A computational model of epithelial solute and water transport along a human nephron. Plos Computational Biology. 15: e1006108. PMID 30802242 DOI: 10.1371/Journal.Pcbi.1006108  0.455
2019 Layton AT. Recent advances in renal epithelial transport. American Journal of Physiology. Renal Physiology. 316: F274-F276. PMID 30516422 DOI: 10.1152/Ajprenal.00510.2018  0.375
2019 Layton AT. Multiscale models of kidney function and diseases Current Opinion in Biomedical Engineering. 11: 1-8. DOI: 10.1016/J.Cobme.2019.09.006  0.374
2018 Leete J, Layton AT. Sex-specific long-term blood pressure regulation: Modeling and analysis. Computers in Biology and Medicine. 104: 139-148. PMID 30472496 DOI: 10.1016/J.Compbiomed.2018.11.002  0.328
2018 Layton AT, Vallon V. Renal tubular solute transport and oxygen consumption: insights from computational models. Current Opinion in Nephrology and Hypertension. 27: 384-389. PMID 30016311 DOI: 10.1097/Mnh.0000000000000435  0.404
2018 Layton AT. Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases. Biological Cybernetics. PMID 29955959 DOI: 10.1007/S00422-018-0765-Y  0.382
2018 Li Q, McDonough AA, Layton HE, Layton AT. Functional Implications of Sexual Dimorphism of Transporter Patterns along the Rat Proximal Tubule: Modeling and Analysis. American Journal of Physiology. Renal Physiology. PMID 29846110 DOI: 10.1152/Ajprenal.00171.2018  0.371
2018 Wei N, Gumz ML, Layton AT. Predicted Effect of Circadian Clock Modulation of NHE3 of a Proximal Tubule Cell on Sodium Transport. American Journal of Physiology. Renal Physiology. PMID 29537313 DOI: 10.1152/Ajprenal.00008.2018  0.435
2018 Layton AT, Vallon V. Cardiovascular benefits of SGLT2 inhibition in diabetes and chronic kidney diseases. Acta Physiologica (Oxford, England). PMID 29424089 DOI: 10.1111/Apha.13050  0.316
2018 Layton AT, Vallon V. SGLT2 Inhibition in a Kidney with Reduced Nephron Number: Modeling and Analysis of Solute Transport and Metabolism. American Journal of Physiology. Renal Physiology. PMID 29361669 DOI: 10.1152/Ajprenal.00551.2017  0.378
2018 Wei N, Layton AT. Theoretical assessment of the Ca2+ oscillations in the afferent arteriole smooth muscle cell of the rat kidney International Journal of Biomathematics. 11: 1850043. DOI: 10.1142/S1793524518500432  0.331
2017 Layton AT, Edwards A, Vallon V. Renal potassium handling in rats with subtotal nephrectomy: Modeling and Analysis. American Journal of Physiology. Renal Physiology. PMID 29357444 DOI: 10.1152/Ajprenal.00460.2017  0.322
2017 Edwards A, Layton AT. Cell Volume Regulation in the Proximal Tubule of Rat Kidney : Proximal Tubule Cell Volume Regulation. Bulletin of Mathematical Biology. PMID 28900833 DOI: 10.1007/S11538-017-0338-6  0.302
2017 Chen Y, Fry BC, Layton AT. Modeling Glucose Metabolism and Lactate Production in the Kidney. Mathematical Biosciences. PMID 28495544 DOI: 10.1016/J.Mbs.2017.04.008  0.399
2017 Chen Y, Sullivan JC, Edwards A, Layton AT. Sex-specific Computational Models of the Spontaneously Hypertensive Rat Kidneys: Factors Affecting Nitric Oxide Bioavailability. American Journal of Physiology. Renal Physiology. ajprenal.00482.2016. PMID 28356289 DOI: 10.1152/Ajprenal.00482.2016  0.404
2017 Layton AT, Edwards A, Vallon V. Adaptive Changes in GFR, Tubular Morphology and Transport in Subtotal Nephrectomized Kidneys: Modeling and Analysis. American Journal of Physiology. Renal Physiology. ajprenal.00018.2017. PMID 28331059 DOI: 10.1152/Ajprenal.00018.2017  0.447
2016 Jiang T, Li Y, Layton AT, Wang W, Sun Y, Li M, Zhou H, Yang B. Generation and phenotypic analysis of mice lacking all urea transporters. Kidney International. PMID 27914708 DOI: 10.1016/J.Kint.2016.09.017  0.351
2016 Layton AT, Laghmani K, Vallon V, Edwards A. Solute Transport and Oxygen Consumption along the Nephrons: Effects of Na+ Transport Inhibitors. American Journal of Physiology. Renal Physiology. ajprenal.00294.2016. PMID 27707706 DOI: 10.1152/Ajprenal.00294.2016  0.342
2016 Layton AT, Vallon V, Edwards A. A Computational Model for Simulating Solute Transport and Oxygen Consumption along the Nephrons. American Journal of Physiology. Renal Physiology. ajprenal.00293.2016. PMID 27707705 DOI: 10.1152/Ajprenal.00293.2016  0.331
2016 Sgouralis I, Kett MM, Ow CP, Abdelkader A, Layton AT, Gardiner BS, Smith DW, Lankadeva YR, Evans RG. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: Experimental and modelling studies. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. ajpregu.00195.2016. PMID 27385734 DOI: 10.1152/Ajpregu.00195.2016  0.393
2016 Chen Y, Fry BC, Layton AT. Modeling Glucose Metabolism in the Kidney. Bulletin of Mathematical Biology. PMID 27371260 DOI: 10.1007/S11538-016-0188-7  0.375
2016 Sgouralis I, Evans RG, Layton AT. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Mathematical Medicine and Biology : a Journal of the Ima. PMID 27281792 DOI: 10.1093/Imammb/Dqw010  0.409
2016 Sgouralis I, Maroulas V, Layton AT. Transfer Function Analysis of Dynamic Blood Flow Control in the Rat Kidney. Bulletin of Mathematical Biology. PMID 27173401 DOI: 10.1007/S11538-016-0168-Y  0.44
2016 Liu R, Layton AT. Modeling the effects of positive and negative feedback in kidney blood flow control. Mathematical Biosciences. PMID 26972744 DOI: 10.1016/J.Mbs.2016.02.007  0.412
2016 Fry BC, Edwards A, Layton AT. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. American Journal of Physiology. Renal Physiology. 310: F237-47. PMID 26831340 DOI: 10.1152/Ajprenal.00334.2015  0.378
2016 Layton AT, Vallon V, Edwards A. Predicted Consequences of Diabetes and SGLT Inhibition on Transport and Oxygen Consumption along a Rat Nephron. American Journal of Physiology. Renal Physiology. ajprenal.00543.2015. PMID 26764207 DOI: 10.1152/Ajprenal.00543.2015  0.354
2016 Sgouralis I, Layton AT. Conduction of feedback-mediated signal in a computational model of coupled nephrons. Mathematical Medicine and Biology : a Journal of the Ima. 33: 87-106. PMID 25795767 DOI: 10.1093/Imammb/Dqv005  0.387
2016 Herschlag G, Liu JG, Layton AT. Fluid extraction across pumping and permeable walls in the viscous limit Physics of Fluids. 28. DOI: 10.1063/1.4946005  0.333
2015 Xie L, Layton AT, Wang N, Larson PE, Zhang JL, Lee VS, Liu C, Johnson GA. Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function. American Journal of Physiology. Renal Physiology. ajprenal.00351.2015. PMID 26447222 DOI: 10.1152/Ajprenal.00351.2015  0.352
2015 Layton AT, Edwards A. Predicted Effects of Nitric Oxide and Superoxide on the Vasoactivity of the Afferent Arteriole. American Journal of Physiology. Renal Physiology. ajprenal.00187.2015. PMID 26180238 DOI: 10.1152/Ajprenal.00187.2015  0.355
2015 Layton AT, Vallon V, Edwards A. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. American Journal of Physiology. Renal Physiology. 308: F1343-57. PMID 25855513 DOI: 10.1152/Ajprenal.00007.2015  0.368
2015 Sgouralis I, Layton AT. Mathematical modeling of renal hemodynamics in physiology and pathophysiology. Mathematical Biosciences. 264: 8-20. PMID 25765886 DOI: 10.1016/J.Mbs.2015.02.016  0.432
2015 Ford Versypt AN, Makrides E, Arciero JC, Ellwein L, Layton AT. Bifurcation study of blood flow control in the kidney. Mathematical Biosciences. 263: 169-79. PMID 25747903 DOI: 10.1016/J.Mbs.2015.02.015  0.457
2015 Layton AT. Recent advances in renal hemodynamics: insights from bench experiments and computer simulations. American Journal of Physiology. Renal Physiology. 308: F951-5. PMID 25715984 DOI: 10.1152/Ajprenal.00008.2015  0.381
2015 Fry BC, Edwards A, Layton AT. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration. American Journal of Physiology. Renal Physiology. 308: F967-80. PMID 25651567 DOI: 10.1152/Ajprenal.00600.2014  0.433
2015 Sgouralis I, Evans RG, Gardiner BS, Smith JA, Fry BC, Layton AT. Renal hemodynamics, function, and oxygenation during cardiac surgery performed on cardiopulmonary bypass: a modeling study. Physiological Reports. 3. PMID 25602016 DOI: 10.14814/Phy2.12260  0.384
2015 Nganguia H, Young YN, Layton AT, Hu WF, Lai MC. An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes flow Communications in Computational Physics. 18: 429-449. DOI: 10.4208/Cicp.171014.270315A  0.321
2015 Herschlag G, Liu JG, Layton AT. An exact solution for stokes flow in a channel with arbitrarily large wall permeability Siam Journal On Applied Mathematics. 75: 2246-2267. DOI: 10.1137/140995854  0.302
2014 Layton AT. Mathematical modeling of urea transport in the kidney. Sub-Cellular Biochemistry. 73: 31-43. PMID 25298337 DOI: 10.1007/978-94-017-9343-8_3  0.443
2014 Fry BC, Layton AT. Oxygen transport in a cross section of the rat inner medulla: impact of heterogeneous distribution of nephrons and vessels. Mathematical Biosciences. 258: 68-76. PMID 25260928 DOI: 10.1016/J.Mbs.2014.09.009  0.419
2014 Pannabecker TL, Layton AT. Targeted delivery of solutes and oxygen in the renal medulla: role of microvessel architecture. American Journal of Physiology. Renal Physiology. 307: F649-55. PMID 25056344 DOI: 10.1152/Ajprenal.00276.2014  0.424
2014 Fry BC, Edwards A, Sgouralis I, Layton AT. Impact of renal medullary three-dimensional architecture on oxygen transport. American Journal of Physiology. Renal Physiology. 307: F263-72. PMID 24899054 DOI: 10.1152/Ajprenal.00149.2014  0.45
2014 Edwards A, Castrop H, Laghmani K, Vallon V, Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. American Journal of Physiology. Renal Physiology. 307: F137-46. PMID 24848496 DOI: 10.1152/Ajprenal.00158.2014  0.419
2014 Sgouralis I, Layton AT. Theoretical assessment of renal autoregulatory mechanisms. American Journal of Physiology. Renal Physiology. 306: F1357-71. PMID 24623150 DOI: 10.1152/Ajprenal.00649.2013  0.431
2014 Moss R, Layton AT. Dominant factors that govern pressure natriuresis in diuresis and antidiuresis: A mathematical model American Journal of Physiology - Renal Physiology. 306: F952-F969. PMID 24553433 DOI: 10.1152/Ajprenal.00500.2013  0.445
2014 Edwards A, Layton AT. Calcium dynamics underlying the myogenic response of the renal afferent arteriole. American Journal of Physiology. Renal Physiology. 306: F34-48. PMID 24173354 DOI: 10.1152/Ajprenal.00317.2013  0.322
2014 Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clinical Journal of the American Society of Nephrology : Cjasn. 9: 1781-9. PMID 23908457 DOI: 10.2215/Cjn.08750812  0.455
2014 Ryu H, Layton AT. Tubular fluid flow and distal NaCl delivery mediated by tubuloglomerular feedback in the rat kidney. Journal of Mathematical Biology. 68: 1023-49. PMID 23529284 DOI: 10.1007/S00285-013-0667-5  0.621
2013 Sgouralis I, Layton AT. Control and modulation of fluid flow in the rat kidney. Bulletin of Mathematical Biology. 75: 2551-74. PMID 24132579 DOI: 10.1007/S11538-013-9907-5  0.476
2013 Layton AT, Bankir L. Impacts of Active Urea Secretion into Pars Recta on Urine Concentration and Urea Excretion Rate. Physiological Reports. 1. PMID 24058732 DOI: 10.1002/Phy2.34  0.432
2013 Layton AT. Mathematical modeling of kidney transport. Wiley Interdisciplinary Reviews. Systems Biology and Medicine. 5: 557-73. PMID 23852667 DOI: 10.1002/Wsbm.1232  0.441
2013 Nieves-González A, Clausen C, Marcano M, Layton AT, Layton HE, Moore LC. Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. American Journal of Physiology. Renal Physiology. 304: F634-52. PMID 23097469 DOI: 10.1152/Ajprenal.00100.2012  0.373
2013 Nieves-González A, Clausen C, Layton AT, Layton HE, Moore LC. Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. American Journal of Physiology. Renal Physiology. 304: F653-64. PMID 23097466 DOI: 10.1152/Ajprenal.00101.2012  0.387
2013 Ryu H, Layton AT. Effect of tubular inhomogeneities on feedback-mediated dynamics of a model of a thick ascending limb. Mathematical Medicine and Biology : a Journal of the Ima. 30: 191-212. PMID 22511507 DOI: 10.1093/Imammb/Dqs020  0.616
2013 Li Y, Williams SA, Layton AT. A hybrid immersed interface method for driven stokes flow in an elastic tube Numerical Mathematics. 6: 600-616. DOI: 10.1017/S1004897900000337  0.36
2013 Leiderman K, Bouzarth EL, Cortez R, Layton AT. A regularization method for the numerical solution of periodic Stokes flow Journal of Computational Physics. 236: 187-202. DOI: 10.1016/J.Jcp.2012.09.035  0.311
2012 Layton AT. Modeling Transport and Flow Regulatory Mechanisms of the Kidney. Isrn Biomathematics. 2012. PMID 23914303 DOI: 10.5402/2012/170594  0.437
2012 Edwards A, Layton AT. Impact of nitric oxide-mediated vasodilation on outer medullary NaCl transport and oxygenation. American Journal of Physiology. Renal Physiology. 303: F907-17. PMID 22791340 DOI: 10.1152/Ajprenal.00055.2012  0.38
2012 Layton AT, Pham P, Ryu H. Signal transduction in a compliant short loop of Henle. International Journal For Numerical Methods in Biomedical Engineering. 28: 369-83. PMID 22577511 DOI: 10.1002/Cnm.1475  0.564
2012 Sgouralis I, Layton AT. Autoregulation and conduction of vasomotor responses in a mathematical model of the rat afferent arteriole. American Journal of Physiology. Renal Physiology. 303: F229-39. PMID 22496414 DOI: 10.1152/Ajprenal.00589.2011  0.409
2012 Savage NS, Layton AT, Lew DJ. Mechanistic mathematical model of polarity in yeast. Molecular Biology of the Cell. 23: 1998-2013. PMID 22438587 DOI: 10.1091/Mbc.E11-10-0837  0.304
2012 Layton AT, Moore LC, Layton HE. Signal transduction in a compliant thick ascending limb. American Journal of Physiology. Renal Physiology. 302: F1188-202. PMID 22262482 DOI: 10.1152/Ajprenal.00732.2010  0.37
2012 Layton AT, Gilbert RL, Pannabecker TL. Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 302: F830-9. PMID 22160770 DOI: 10.1152/Ajprenal.00539.2011  0.334
2012 Layton AT, Dantzler WH, Pannabecker TL. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter. American Journal of Physiology. Renal Physiology. 302: F591-605. PMID 22088433 DOI: 10.1152/Ajprenal.00263.2011  0.456
2012 Layton AT, Beale JT. A partially implicit hybrid method for computing interface motion in stokes flow Discrete and Continuous Dynamical Systems - Series B. 17: 1139-1153. DOI: 10.3934/Dcdsb.2012.17.1139  0.326
2012 Li Y, Layton AT. Accurate computation of Stokes flow driven by an open immersed interface Journal of Computational Physics. 231: 5195-5215. DOI: 10.1016/J.Jcp.2012.04.020  0.342
2011 Edwards A, Layton AT. Modulation of outer medullary NaCl transport and oxygenation by nitric oxide and superoxide. American Journal of Physiology. Renal Physiology. 301: F979-96. PMID 21849492 DOI: 10.1152/Ajprenal.00096.2011  0.346
2011 Layton AT, Layton HE. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. American Journal of Physiology. Renal Physiology. 301: F1047-56. PMID 21753076 DOI: 10.1152/Ajprenal.00620.2010  0.339
2011 Layton AT, Bowen M, Wen A, Layton HE. Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs. Mathematical Biosciences. 230: 115-27. PMID 21329704 DOI: 10.1016/J.Mbs.2011.02.004  0.429
2011 Chen J, Sgouralis I, Moore LC, Layton HE, Layton AT. A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. American Journal of Physiology. Renal Physiology. 300: F669-81. PMID 21190949 DOI: 10.1152/Ajprenal.00382.2010  0.419
2011 Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture. American Journal of Physiology. Renal Physiology. 300: F372-84. PMID 21068088 DOI: 10.1152/Ajprenal.00204.2010  0.474
2011 Layton AT. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 300: F356-71. PMID 21068086 DOI: 10.1152/Ajprenal.00203.2010  0.483
2011 Dantzler WH, Pannabecker TL, Layton AT, Layton HE. Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture Acta Physiologica (Oxford, England). 202: 361-378. PMID 21054810 DOI: 10.1111/J.1748-1716.2010.02214.X  0.337
2011 Bouzarth EL, Layton AT, Young YN. Modeling a semi-flexible filament in cellular Stokes flow using regularized Stokeslets International Journal For Numerical Methods in Biomedical Engineering. 27: 2021-2034. DOI: 10.1002/Cnm.1454  0.337
2010 Layton AT. Feedback-mediated dynamics in a model of a compliant thick ascending limb. Mathematical Biosciences. 228: 185-94. PMID 20934438 DOI: 10.1016/J.Mbs.2010.10.002  0.443
2010 Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. I. Effects of low medullary oxygen tension. American Journal of Physiology. Renal Physiology. 299: F616-33. PMID 20534869 DOI: 10.1152/Ajprenal.00680.2009  0.393
2010 Edwards A, Layton AT. Nitric oxide and superoxide transport in a cross section of the rat outer medulla. II. Reciprocal interactions and tubulovascular cross talk. American Journal of Physiology. Renal Physiology. 299: F634-47. PMID 20519375 DOI: 10.1152/Ajprenal.00681.2009  0.375
2010 Chen J, Edwards A, Layton AT. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. American Journal of Physiology. Renal Physiology. 298: F1369-83. PMID 20335320 DOI: 10.1152/Ajprenal.00572.2009  0.377
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Functional implications of the three-dimensional architecture of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 298: F973-87. PMID 20053796 DOI: 10.1152/Ajprenal.00249.2009  0.398
2010 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. American Journal of Physiology. Renal Physiology. 298: F962-72. PMID 20042460 DOI: 10.1152/Ajprenal.00250.2009  0.424
2010 Marcano M, Layton AT, Layton HE. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bulletin of Mathematical Biology. 72: 314-39. PMID 19915926 DOI: 10.1007/S11538-009-9448-0  0.347
2010 Loreto M, Layton AT. An optimization study of a mathematical model of the urine concentrating mechanism of the rat kidney. Mathematical Biosciences. 223: 66-78. PMID 19891979 DOI: 10.1016/J.Mbs.2009.10.009  0.351
2010 Layton AT, Edwards A. Tubuloglomerular feedback signal transduction in a short loop of henle. Bulletin of Mathematical Biology. 72: 34-62. PMID 19657700 DOI: 10.1007/S11538-009-9436-4  0.456
2009 Layton AT, Layton HE, Dantzler WH, Pannabecker TL. The mammalian urine concentrating mechanism: hypotheses and uncertainties. Physiology (Bethesda, Md.). 24: 250-6. PMID 19675356 DOI: 10.1152/Physiol.00013.2009  0.367
2009 Chen J, Layton AT, Edwards A. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results. American Journal of Physiology. Renal Physiology. 297: F517-36. PMID 19403646 DOI: 10.1152/Ajprenal.90496.2008  0.351
2009 Chen J, Edwards A, Layton AT. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture. American Journal of Physiology. Renal Physiology. 297: F537-48. PMID 19403645 DOI: 10.1152/Ajprenal.90497.2008  0.409
2009 Layton AT, Moore LC, Layton HE. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons. Bulletin of Mathematical Biology. 71: 515-55. PMID 19205808 DOI: 10.1007/S11538-008-9370-X  0.407
2009 Beale JT, Layton AT. A velocity decomposition approach for moving interfaces in viscous fluids Journal of Computational Physics. 228: 3358-3367. DOI: 10.1016/J.Jcp.2009.01.023  0.334
2009 Layton AT. Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces Computers and Fluids. 38: 266-272. DOI: 10.1016/J.Compfluid.2008.02.003  0.31
2008 Pannabecker TL, Dantzler WH, Layton HE, Layton AT. Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. American Journal of Physiology. Renal Physiology. 295: F1271-85. PMID 18495796 DOI: 10.1152/Ajprenal.90252.2008  0.339
2008 Layton AT. An efficient numerical method for the two-fluid Stokes equations with a moving immersed boundary Computer Methods in Applied Mechanics and Engineering. 197: 2147-2155. DOI: 10.1016/J.Cma.2007.08.018  0.342
2007 Layton AT. Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney. Bulletin of Mathematical Biology. 69: 887-929. PMID 17265123 DOI: 10.1007/S11538-005-9030-3  0.453
2006 Marcano M, Layton AT, Layton HE. An optimization algorithm for a distributed-loop model of an avian urine concentrating mechanism. Bulletin of Mathematical Biology. 68: 1625-60. PMID 16967257 DOI: 10.1007/S11538-006-9087-1  0.38
2006 Layton AT, Moore LC, Layton HE. Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats. American Journal of Physiology. Renal Physiology. 291: F79-97. PMID 16204416 DOI: 10.1152/Ajprenal.00048.2005  0.346
2006 Layton AT. Modeling water transport across elastic boundaries using an explicit jump method Siam Journal On Scientific Computing. 28: 2189-2207. DOI: 10.1137/050642198  0.381
2006 Thomas SR, Layton AT, Layton HE, Moore LC. Kidney modeling: Status and perspectives Proceedings of the Ieee. 94: 740-752. DOI: 10.1109/JPROC.2006.871770  0.306
2005 Layton AT. Role of structural organization in the urine concentrating mechanism of an avian kidney. Mathematical Biosciences. 197: 211-30. PMID 16135372 DOI: 10.1016/J.Mbs.2005.07.004  0.426
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results. American Journal of Physiology. Renal Physiology. 289: F1346-66. PMID 15914776 DOI: 10.1152/Ajprenal.00346.2003  0.47
2005 Layton AT, Layton HE. A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity. American Journal of Physiology. Renal Physiology. 289: F1367-81. PMID 15914775 DOI: 10.1152/Ajprenal.00347.2003  0.442
2005 Layton AT. A methodology for tracking solute distribution in a mathematical model of the kidney Journal of Biological Systems. 13: 399-419. DOI: 10.1142/S0218339005001598  0.374
2004 Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Two modes for concentrating urine in rat inner medulla. American Journal of Physiology. Renal Physiology. 287: F816-39. PMID 15213067 DOI: 10.1152/Ajprenal.00398.2003  0.389
2004 Layton AT, Minion ML. Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics Journal of Computational Physics. 194: 697-715. DOI: 10.1016/J.Jcp.2003.09.010  0.336
2003 Layton AT, Layton HE. A region-based model framework for the rat urine concentrating mechanism. Bulletin of Mathematical Biology. 65: 859-901. PMID 12909254 DOI: 10.1016/S0092-8240(03)00045-4  0.46
2003 Layton AT, Layton HE. An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Mathematical Biosciences. 181: 111-32. PMID 12445757 DOI: 10.1016/S0025-5564(02)00176-1  0.384
2003 Layton AT. A semi-Lagrangian collocation method for the shallow water equations on the sphere Siam Journal On Scientific Computing. 24: 1433-1449. DOI: 10.1137/S1064827501395021  0.32
2003 Bourlioux A, Layton AT, Minion ML. High-order multi-implicit spectral deferred correction methods for problems of reactive flow Journal of Computational Physics. 189: 651-675. DOI: 10.1016/S0021-9991(03)00251-1  0.322
2003 Layton AT, Spotz WF. A semi-Lagrangian double Fourier method for the shallow water equations on the sphere Journal of Computational Physics. 189: 180-196. DOI: 10.1016/S0021-9991(03)00207-9  0.316
2002 Layton AT, Layton HE. A numerical method for renal models that represent tubules with abrupt changes in membrane properties. Journal of Mathematical Biology. 45: 549-67. PMID 12439590 DOI: 10.1007/S00285-002-0166-6  0.435
2002 Layton AT, Layton HE. A semi-lagrangian semi-implicit numerical method for models of the urine concentrating mechanism Siam Journal On Scientific Computing. 23: 1526-1548. DOI: 10.1137/S1064827500381781  0.377
2002 Layton AT, Van de Panne M. A numerically efficient and stable algorithm for animating water waves Visual Computer. 18: 41-53. DOI: 10.1007/S003710100131  0.32
Show low-probability matches.