Emily D. Grossman, PhD - Publications

Cognitive Sciences University of California, Irvine, Irvine, CA 
Vision, motion

35 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Garcia JO, Battelli L, Plow E, Cattaneo Z, Vettel J, Grossman ED. Understanding diaschisis models of attention dysfunction with rTMS. Scientific Reports. 10: 14890. PMID 32913263 DOI: 10.1038/s41598-020-71692-6  1
2019 Ferrari C, Ciricugno A, Battelli L, Grossman ED, Cattaneo Z. Distinct Cerebellar regions for Body Motion Discrimination. Social Cognitive and Affective Neuroscience. PMID 31820788 DOI: 10.1093/scan/nsz088  0.48
2019 Edwards G, Agosta S, Herpich F, Contò F, Parrott D, Tyler S, Grossman ED, Battelli L. Prolonged Neuromodulation of Cortical Networks Following Low-Frequency rTMS and Its Potential for Clinical Interventions. Frontiers in Psychology. 10: 529. PMID 30915006 DOI: 10.3389/fpsyg.2019.00529  0.48
2018 Dasgupta S, Srinivasan R, Grossman ED. Multivariate pattern analysis of the human pSTS: A comparison of three prototypical localizers. Neuropsychologia. PMID 30321614 DOI: 10.1016/j.neuropsychologia.2018.10.004  1
2017 Hasan R, Srinivasan R, Grossman ED. Feature-based attentional tuning during biological motion detection measured with SSVEP. Journal of Vision. 17: 22. PMID 28837968 DOI: 10.1167/17.9.22  1
2016 Agosta S, Magnago D, Tyler S, Grossman E, Galante E, Ferraro F, Mazzini N, Miceli G, Battelli L. The Pivotal Role of the Right Parietal Lobe in Temporal Attention. Journal of Cognitive Neuroscience. 1-11. PMID 27991181 DOI: 10.1162/jocn_a_01086  0.48
2016 Dasgupta S, Tyler SC, Wicks J, Srinivasan R, Grossman ED. Network Connectivity of the Right STS in Three Social Perception Localizers. Journal of Cognitive Neuroscience. 1-14. PMID 27991030 DOI: 10.1162/jocn_a_01054  1
2016 Battelli L, Grossman ED, Plow EB. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimulation. PMID 27838275 DOI: 10.1016/j.brs.2016.10.009  0.48
2015 Tyler SC, Dasgupta S, Agosta S, Battelli L, Grossman ED. Functional connectivity of parietal cortex during temporal selective attention. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. 65: 195-207. PMID 25747530 DOI: 10.1016/j.cortex.2015.01.015  1
2013 Pyles JA, Grossman ED. Neural Mechanisms for Biological Motion and Animacy People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception. DOI: 10.1093/acprof:oso/9780195393705.003.0017  1
2012 Garcia JO, Pyles JA, Grossman ED. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT+). Brain Research. 1466: 56-69. PMID 22634373 DOI: 10.1016/j.brainres.2012.05.034  1
2011 Tyler SC, Grossman ED. Feature-based attention promotes biological motion recognition. Journal of Vision. 11: 11. PMID 21926183 DOI: 10.1167/11.10.11  1
2011 Garcia JO, Grossman ED, Srinivasan R. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. Journal of Neurophysiology. 106: 1734-46. PMID 21715670 DOI: 10.1152/jn.00739.2010  1
2011 Thurman SM, Grossman ED. Diagnostic spatial frequencies and human efficiency for discriminating actions. Attention, Perception & Psychophysics. 73: 572-80. PMID 21264736 DOI: 10.3758/s13414-010-0028-z  1
2010 Thurman SM, Giese MA, Grossman ED. Perceptual and computational analysis of critical features for biological motion. Journal of Vision. 10: 15. PMID 21047747 DOI: 10.1167/10.12.15  1
2010 Grossman ED, Jardine NL, Pyles JA. fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS. Frontiers in Human Neuroscience. 4: 15. PMID 20431723 DOI: 10.3389/neuro.09.015.2010  1
2009 Garcia JO, Grossman ED. Motion opponency and transparency in the human middle temporal area. The European Journal of Neuroscience. 30: 1172-82. PMID 19723288 DOI: 10.1111/j.1460-9568.2009.06893.x  1
2009 Pyles JA, Grossman ED. Neural adaptation for novel objects during dynamic articulation. Neuropsychologia. 47: 1261-8. PMID 19428389 DOI: 10.1016/j.neuropsychologia.2009.01.006  1
2009 Pyles JA, Grossman ED. Corrigendum to "Neural adaptation for novel objects during dynamic articulation" [J. Neuropsychol. 47 (5) 1261-1268] (DOI:10.1016/j.neuropsychologia.2009.01.006) Neuropsychologia. 47: 3030-3031. DOI: 10.1016/j.neuropsychologia.2009.06.007  1
2008 Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R. Concepts are more than percepts: the case of action verbs. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 11347-53. PMID 18971476 DOI: 10.1523/JNEUROSCI.3039-08.2008  1
2008 Chen Y, Grossman ED, Bidwell LC, Yurgelun-Todd D, Gruber SA, Levy DL, Nakayama K, Holzman PS. Differential activation patterns of occipital and prefrontal cortices during motion processing: evidence from normal and schizophrenic brains. Cognitive, Affective & Behavioral Neuroscience. 8: 293-303. PMID 18814466 DOI: 10.3758/CABN.8.3.293  1
2008 Thurman SM, Grossman ED. Temporal "Bubbles" reveal key features for point-light biological motion perception. Journal of Vision. 8: 28.1-11. PMID 18484834 DOI: 10.1167/8.3.28  1
2008 Garcia JO, Grossman ED. Necessary but not sufficient: motion perception is required for perceiving biological motion. Vision Research. 48: 1144-9. PMID 18346774 DOI: 10.1016/j.visres.2008.01.027  1
2008 Grossman ED. Neurophysiology of Action Recognition Understanding Events: From Perception to Action. DOI: 10.1093/acprof:oso/9780195188370.003.0015  1
2007 Pyles JA, Garcia JO, Hoffman DD, Grossman ED. Visual perception and neural correlates of novel 'biological motion'. Vision Research. 47: 2786-97. PMID 17825349 DOI: 10.1016/j.visres.2007.07.017  1
2005 Grossman ED, Battelli L, Pascual-Leone A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research. 45: 2847-53. PMID 16039692 DOI: 10.1016/j.visres.2005.05.027  1
2004 Grossman ED, Blake R, Kim CY. Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience. 16: 1669-79. PMID 15601527 DOI: 10.1162/0898929042568569  1
2003 Grossman ED, Kim CY, Blake R. Brain activity reflects perceptual learning of point-light biological motion Journal of Vision. 3: 81a. DOI: 10.1167/3.9.81  1
2002 Grossman ED, Blake R. Brain Areas Active during Visual Perception of Biological Motion. Neuron. 35: 1167-75. PMID 12354405 DOI: 10.1016/S0896-6273(02)00897-8  1
2002 Tadin D, Lappin JS, Blake R, Grossman ED. What constitutes an efficient reference frame for vision? Nature Neuroscience. 5: 1010-5. PMID 12219092 DOI: 10.1038/nn914  1
2002 Grossman ED, Blake R. An investigation of neural activity associated with viewing point-light animal, face and hand movements Journal of Vision. 2: 341a. DOI: 10.1167/2.7.341  1
2001 Grossman ED, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Research. 41: 1475-82. PMID 11322987 DOI: 10.1016/S0042-6989(00)00317-5  1
2001 Tadin D, Lappin JS, Blake R, Grossman ED. Structured dynamic reference frames for visual perception Journal of Vision. 1: 359a. DOI: 10.1167/1.3.359  1
2000 Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience. 12: 711-20. PMID 11054914  1
1999 Grossman ED, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research. 39: 3721-7. PMID 10746142 DOI: 10.1016/S0042-6989(99)00084-X  1
Show low-probability matches.