Year |
Citation |
Score |
2020 |
Garcia JO, Battelli L, Plow E, Cattaneo Z, Vettel J, Grossman ED. Understanding diaschisis models of attention dysfunction with rTMS. Scientific Reports. 10: 14890. PMID 32913263 DOI: 10.1038/s41598-020-71692-6 |
1 |
|
2019 |
Ferrari C, Ciricugno A, Battelli L, Grossman ED, Cattaneo Z. Distinct Cerebellar regions for Body Motion Discrimination. Social Cognitive and Affective Neuroscience. PMID 31820788 DOI: 10.1093/scan/nsz088 |
0.48 |
|
2019 |
Edwards G, Agosta S, Herpich F, Contò F, Parrott D, Tyler S, Grossman ED, Battelli L. Prolonged Neuromodulation of Cortical Networks Following Low-Frequency rTMS and Its Potential for Clinical Interventions. Frontiers in Psychology. 10: 529. PMID 30915006 DOI: 10.3389/fpsyg.2019.00529 |
0.48 |
|
2018 |
Dasgupta S, Srinivasan R, Grossman ED. Multivariate pattern analysis of the human pSTS: A comparison of three prototypical localizers. Neuropsychologia. PMID 30321614 DOI: 10.1016/j.neuropsychologia.2018.10.004 |
1 |
|
2017 |
Hasan R, Srinivasan R, Grossman ED. Feature-based attentional tuning during biological motion detection measured with SSVEP. Journal of Vision. 17: 22. PMID 28837968 DOI: 10.1167/17.9.22 |
1 |
|
2016 |
Agosta S, Magnago D, Tyler S, Grossman E, Galante E, Ferraro F, Mazzini N, Miceli G, Battelli L. The Pivotal Role of the Right Parietal Lobe in Temporal Attention. Journal of Cognitive Neuroscience. 1-11. PMID 27991181 DOI: 10.1162/jocn_a_01086 |
0.48 |
|
2016 |
Dasgupta S, Tyler SC, Wicks J, Srinivasan R, Grossman ED. Network Connectivity of the Right STS in Three Social Perception Localizers. Journal of Cognitive Neuroscience. 1-14. PMID 27991030 DOI: 10.1162/jocn_a_01054 |
1 |
|
2016 |
Battelli L, Grossman ED, Plow EB. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network. Brain Stimulation. PMID 27838275 DOI: 10.1016/j.brs.2016.10.009 |
0.48 |
|
2015 |
Tyler SC, Dasgupta S, Agosta S, Battelli L, Grossman ED. Functional connectivity of parietal cortex during temporal selective attention. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior. 65: 195-207. PMID 25747530 DOI: 10.1016/j.cortex.2015.01.015 |
1 |
|
2013 |
Pyles JA, Grossman ED. Neural Mechanisms for Biological Motion and Animacy People Watching: Social, Perceptual, and Neurophysiological Studies of Body Perception. DOI: 10.1093/acprof:oso/9780195393705.003.0017 |
1 |
|
2012 |
Garcia JO, Pyles JA, Grossman ED. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT+). Brain Research. 1466: 56-69. PMID 22634373 DOI: 10.1016/j.brainres.2012.05.034 |
1 |
|
2011 |
Tyler SC, Grossman ED. Feature-based attention promotes biological motion recognition. Journal of Vision. 11: 11. PMID 21926183 DOI: 10.1167/11.10.11 |
1 |
|
2011 |
Garcia JO, Grossman ED, Srinivasan R. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. Journal of Neurophysiology. 106: 1734-46. PMID 21715670 DOI: 10.1152/jn.00739.2010 |
1 |
|
2011 |
Thurman SM, Grossman ED. Diagnostic spatial frequencies and human efficiency for discriminating actions. Attention, Perception & Psychophysics. 73: 572-80. PMID 21264736 DOI: 10.3758/s13414-010-0028-z |
1 |
|
2010 |
Thurman SM, Giese MA, Grossman ED. Perceptual and computational analysis of critical features for biological motion. Journal of Vision. 10: 15. PMID 21047747 DOI: 10.1167/10.12.15 |
1 |
|
2010 |
Grossman ED, Jardine NL, Pyles JA. fMR-Adaptation Reveals Invariant Coding of Biological Motion on the Human STS. Frontiers in Human Neuroscience. 4: 15. PMID 20431723 DOI: 10.3389/neuro.09.015.2010 |
1 |
|
2009 |
Garcia JO, Grossman ED. Motion opponency and transparency in the human middle temporal area. The European Journal of Neuroscience. 30: 1172-82. PMID 19723288 DOI: 10.1111/j.1460-9568.2009.06893.x |
1 |
|
2009 |
Pyles JA, Grossman ED. Neural adaptation for novel objects during dynamic articulation. Neuropsychologia. 47: 1261-8. PMID 19428389 DOI: 10.1016/j.neuropsychologia.2009.01.006 |
1 |
|
2009 |
Pyles JA, Grossman ED. Corrigendum to "Neural adaptation for novel objects during dynamic articulation" [J. Neuropsychol. 47 (5) 1261-1268] (DOI:10.1016/j.neuropsychologia.2009.01.006) Neuropsychologia. 47: 3030-3031. DOI: 10.1016/j.neuropsychologia.2009.06.007 |
1 |
|
2008 |
Bedny M, Caramazza A, Grossman E, Pascual-Leone A, Saxe R. Concepts are more than percepts: the case of action verbs. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 11347-53. PMID 18971476 DOI: 10.1523/JNEUROSCI.3039-08.2008 |
1 |
|
2008 |
Chen Y, Grossman ED, Bidwell LC, Yurgelun-Todd D, Gruber SA, Levy DL, Nakayama K, Holzman PS. Differential activation patterns of occipital and prefrontal cortices during motion processing: evidence from normal and schizophrenic brains. Cognitive, Affective & Behavioral Neuroscience. 8: 293-303. PMID 18814466 DOI: 10.3758/CABN.8.3.293 |
1 |
|
2008 |
Thurman SM, Grossman ED. Temporal "Bubbles" reveal key features for point-light biological motion perception. Journal of Vision. 8: 28.1-11. PMID 18484834 DOI: 10.1167/8.3.28 |
1 |
|
2008 |
Garcia JO, Grossman ED. Necessary but not sufficient: motion perception is required for perceiving biological motion. Vision Research. 48: 1144-9. PMID 18346774 DOI: 10.1016/j.visres.2008.01.027 |
1 |
|
2008 |
Grossman ED. Neurophysiology of Action Recognition Understanding Events: From Perception to Action. DOI: 10.1093/acprof:oso/9780195188370.003.0015 |
1 |
|
2007 |
Pyles JA, Garcia JO, Hoffman DD, Grossman ED. Visual perception and neural correlates of novel 'biological motion'. Vision Research. 47: 2786-97. PMID 17825349 DOI: 10.1016/j.visres.2007.07.017 |
1 |
|
2005 |
Grossman ED, Battelli L, Pascual-Leone A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research. 45: 2847-53. PMID 16039692 DOI: 10.1016/j.visres.2005.05.027 |
1 |
|
2004 |
Grossman ED, Blake R, Kim CY. Learning to see biological motion: brain activity parallels behavior. Journal of Cognitive Neuroscience. 16: 1669-79. PMID 15601527 DOI: 10.1162/0898929042568569 |
1 |
|
2003 |
Grossman ED, Kim CY, Blake R. Brain activity reflects perceptual learning of point-light biological motion Journal of Vision. 3: 81a. DOI: 10.1167/3.9.81 |
1 |
|
2002 |
Grossman ED, Blake R. Brain Areas Active during Visual Perception of Biological Motion. Neuron. 35: 1167-75. PMID 12354405 DOI: 10.1016/S0896-6273(02)00897-8 |
1 |
|
2002 |
Tadin D, Lappin JS, Blake R, Grossman ED. What constitutes an efficient reference frame for vision? Nature Neuroscience. 5: 1010-5. PMID 12219092 DOI: 10.1038/nn914 |
1 |
|
2002 |
Grossman ED, Blake R. An investigation of neural activity associated with viewing point-light animal, face and hand movements Journal of Vision. 2: 341a. DOI: 10.1167/2.7.341 |
1 |
|
2001 |
Grossman ED, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Research. 41: 1475-82. PMID 11322987 DOI: 10.1016/S0042-6989(00)00317-5 |
1 |
|
2001 |
Tadin D, Lappin JS, Blake R, Grossman ED. Structured dynamic reference frames for visual perception Journal of Vision. 1: 359a. DOI: 10.1167/1.3.359 |
1 |
|
2000 |
Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience. 12: 711-20. PMID 11054914 |
1 |
|
1999 |
Grossman ED, Blake R. Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research. 39: 3721-7. PMID 10746142 DOI: 10.1016/S0042-6989(99)00084-X |
1 |
|
Show low-probability matches. |