Todd Graham - Publications

Affiliations: 
Biological Sciences Vanderbilt University, Nashville, TN 
Area:
Molecular Biology, Biochemistry, General Biology
Website:
https://as.vanderbilt.edu/biosci/bio/todd-graham

66 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. Biochimica Et Biophysica Acta. Molecular Cell Research. 1871: 119700. PMID 38382846 DOI: 10.1016/j.bbamcr.2024.119700  0.421
2023 Yazlovitskaya EM, Graham TR. Type IV P-Type ATPases: Recent Updates in Cancer Development, Progression, and Treatment. Cancers. 15. PMID 37686603 DOI: 10.3390/cancers15174327  0.333
2023 Pazos I, Puig-Tintó M, Betancur L, Cordero J, Jiménez-Menéndez N, Abella M, Hernández AC, Duran AG, Adachi-Fernández E, Belmonte-Mateos C, Sabido-Bozo S, Tosi S, Nezu A, Oliva B, Colombelli J, ... Graham TR, et al. The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast. Embo Reports. e56134. PMID 36929574 DOI: 10.15252/embr.202256134  0.454
2022 Jimenez M, Best JT, Date SS, Graham TR. Quantification of Golgi Protein Mislocalization to the Budding Yeast Vacuole. Methods in Molecular Biology (Clifton, N.J.). 2557: 17-28. PMID 36512206 DOI: 10.1007/978-1-0716-2639-9_2  0.302
2022 Jain BK, Wagner AS, Reynolds TB, Graham TR. Lipid Transport by Dnf2 Is Required for Hyphal Growth and Virulence. Infection and Immunity. e0041622. PMID 36214556 DOI: 10.1128/iai.00416-22  0.473
2022 Date SS, Xu P, Hepowit NL, Diab NS, Best J, Xie B, Du J, Strieter ER, Jackson LP, MacGurn JA, Graham TR. Ubiquitination drives COPI priming and Golgi SNARE localization. Elife. 11. PMID 35904239 DOI: 10.7554/eLife.80911  0.306
2021 Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, Li H. Structural basis of the P4B ATPase lipid flippase activity. Nature Communications. 12: 5963. PMID 34645814 DOI: 10.1038/s41467-021-26273-0  0.338
2020 Jain BK, Roland BP, Graham TR. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity. The Journal of Biological Chemistry. 295: 17997-18009. PMID 33453812 DOI: 10.1074/jbc.RA120.014794  0.817
2020 Bai L, You Q, Jain BK, Duan HD, Kovach A, Graham TR, Li H. Transport mechanism of P4 ATPase phosphatidylcholine flippases. Elife. 9. PMID 33320091 DOI: 10.7554/eLife.62163  0.424
2020 Jain BK, Roland BP, Graham TR. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity. The Journal of Biological Chemistry. PMID 33060204 DOI: 10.1074/jbc.RA120.014794  0.817
2020 Best JT, Xu P, McGuire JG, Leahy SN, Graham TR. Yeast synaptobrevin, Snc1, engages distinct routes of post-endocytic recycling mediated by a sorting nexin, Rcy1-COPI, and retromer. Molecular Biology of the Cell. mbcE19050290. PMID 32074001 DOI: 10.1091/mbc.E19-05-0290  0.416
2019 Huang Y, Takar M, Best JT, Graham TR. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae. Biochimica Et Biophysica Acta. Molecular and Cell Biology of Lipids. 158581. PMID 31786280 DOI: 10.1016/j.bbalip.2019.158581  0.493
2019 Best JT, Xu P, Graham TR. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Current Opinion in Cell Biology. 59: 8-15. PMID 30897446 DOI: 10.1016/j.ceb.2019.02.004  0.509
2019 Takar M, Huang Y, Graham TR. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry. Journal of Lipid Research. PMID 30824614 DOI: 10.1194/jlr.M093526  0.487
2018 Roland BP, Naito T, Best JT, Arnaiz-Yépez C, Takatsu H, Yu RJ, Shin HW, Graham TR. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. The Journal of Biological Chemistry. PMID 30530492 DOI: 10.1074/Jbc.Ra118.005876  0.805
2017 Xu P, Hankins HM, MacDonald C, Erlinger SJ, Frazier MN, Diab NS, Piper RC, Jackson LP, MacGurn JA, Graham TR. COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal. Elife. 6. PMID 29058666 DOI: 10.7554/eLife.28342  0.392
2016 Wu Y, Takar M, Cuentas-Condori AA, Graham TR. Neo1 and phosphatidylethanolamine contribute to vacuole membrane fusion in Saccharomyces cerevisiae. Cellular Logistics. 6: e1228791. PMID 27738552 DOI: 10.1080/21592799.2016.1228791  0.482
2016 Roland BP, Graham TR. Decoding P4-ATPase substrate interactions. Critical Reviews in Biochemistry and Molecular Biology. 1-15. PMID 27696908 DOI: 10.1080/10409238.2016.1237934  0.803
2016 Roland BP, Graham TR. Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Proceedings of the National Academy of Sciences of the United States of America. PMID 27432949 DOI: 10.1073/Pnas.1525730113  0.812
2016 Takar M, Wu Y, Graham TR. The essential Neo1 from budding yeast plays a role in establishing aminophospholipid asymmetry of the plasma membrane. The Journal of Biological Chemistry. PMID 27235400 DOI: 10.1074/jbc.M115.686253  0.416
2015 Hankins HM, Sere YY, Diab NS, Menon AK, Graham TR. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Molecular Biology of the Cell. PMID 26466678 DOI: 10.1091/Mbc.E15-07-0487  0.466
2015 Hankins HM, Baldridge RD, Xu P, Graham TR. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic (Copenhagen, Denmark). 16: 35-47. PMID 25284293 DOI: 10.1111/tra.12233  0.802
2015 Graham TR. Control of Membrane Asymmetry by P4-ATPases Biophysical Journal. 108: 1a. DOI: 10.1016/j.bpj.2014.11.018  0.361
2013 Zhou X, Sebastian TT, Graham TR. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail. The Journal of Biological Chemistry. 288: 31807-15. PMID 24045945 DOI: 10.1074/jbc.M113.481986  0.3
2013 Xu P, Baldridge RD, Chi RJ, Burd CG, Graham TR. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. The Journal of Cell Biology. 202: 875-86. PMID 24019533 DOI: 10.1083/Jcb.201305094  0.841
2013 Baldridge RD, Xu P, Graham TR. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain. The Journal of Biological Chemistry. 288: 19516-27. PMID 23709217 DOI: 10.1074/jbc.M113.476911  0.819
2013 Graham TR. Arl1 gets into the membrane remodeling business with a flippase and ArfGEF. Proceedings of the National Academy of Sciences of the United States of America. 110: 2691-2. PMID 23401560 DOI: 10.1073/pnas.1300420110  0.31
2013 Baldridge RD, Graham TR. Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases. Proceedings of the National Academy of Sciences of the United States of America. 110: E358-67. PMID 23302692 DOI: 10.1073/pnas.1216948110  0.826
2012 Baldridge RD, Graham TR. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proceedings of the National Academy of Sciences of the United States of America. 109: E290-8. PMID 22308393 DOI: 10.1073/pnas.1115725109  0.815
2012 Sebastian TT, Baldridge RD, Xu P, Graham TR. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochimica Et Biophysica Acta. 1821: 1068-77. PMID 22234261 DOI: 10.1016/j.bbalip.2011.12.007  0.835
2011 Brett CL, Kallay L, Hua Z, Green R, Chyou A, Zhang Y, Graham TR, Donowitz M, Rao R. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae. Plos One. 6: e17619. PMID 21423800 DOI: 10.1371/Journal.Pone.0017619  0.717
2011 Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends in Cell Biology. 21: 113-21. PMID 21282087 DOI: 10.1016/J.Tcb.2010.10.002  0.417
2010 Graham TR, Kozlov MM. Interplay of proteins and lipids in generating membrane curvature. Current Opinion in Cell Biology. 22: 430-6. PMID 20605711 DOI: 10.1016/j.ceb.2010.05.002  0.365
2009 Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nature Cell Biology. 11: 1421-6. PMID 19898464 DOI: 10.1038/ncb1989  0.426
2009 Zhou X, Graham TR. Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proceedings of the National Academy of Sciences of the United States of America. 106: 16586-91. PMID 19805341 DOI: 10.1073/pnas.0904293106  0.464
2009 Muthusamy BP, Raychaudhuri S, Natarajan P, Abe F, Liu K, Prinz WA, Graham TR. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Molecular Biology of the Cell. 20: 2920-31. PMID 19403696 DOI: 10.1091/mbc.E08-10-1036  0.516
2009 Muthusamy BP, Natarajan P, Zhou X, Graham TR. Linking phospholipid flippases to vesicle-mediated protein transport. Biochimica Et Biophysica Acta. 1791: 612-9. PMID 19286470 DOI: 10.1016/j.bbalip.2009.03.004  0.498
2008 Liu K, Surendhran K, Nothwehr SF, Graham TR. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Molecular Biology of the Cell. 19: 3526-35. PMID 18508916 DOI: 10.1091/Mbc.E08-01-0025  0.386
2008 Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT. Genome-wide analysis of sterol-lipid storage and trafficking in Saccharomyces cerevisiae. Eukaryotic Cell. 7: 401-14. PMID 18156287 DOI: 10.1128/EC.00386-07  0.34
2007 Liu K, Hua Z, Nepute JA, Graham TR. Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Molecular Biology of the Cell. 18: 487-500. PMID 17122361 DOI: 10.1091/Mbc.E06-07-0592  0.801
2006 Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic (Copenhagen, Denmark). 7: 1503-17. PMID 16956384 DOI: 10.1111/J.1600-0854.2006.00485.X  0.493
2006 Natarajan P, Graham TR. Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes. Methods (San Diego, Calif.). 39: 163-8. PMID 16828307 DOI: 10.1016/j.ymeth.2006.05.009  0.427
2004 Graham TR. Flippases and vesicle-mediated protein transport. Trends in Cell Biology. 14: 670-7. PMID 15564043 DOI: 10.1016/j.tcb.2004.10.008  0.473
2004 Natarajan P, Wang J, Hua Z, Graham TR. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proceedings of the National Academy of Sciences of the United States of America. 101: 10614-9. PMID 15249668 DOI: 10.1073/Pnas.0404146101  0.815
2004 Graham TR. Membrane targeting: getting Arl to the Golgi. Current Biology : Cb. 14: R483-5. PMID 15203023 DOI: 10.1016/j.cub.2004.06.017  0.368
2004 Chim N, Gall WE, Xiao J, Harris MP, Graham TR, Krezel AM. Solution structure of the ubiquitin-binding domain in Swa2p from Saccharomyces cerevisiae. Proteins. 54: 784-93. PMID 14997574 DOI: 10.1002/Prot.10636  0.649
2004 Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of Cell Science. 117: 711-22. PMID 14734650 DOI: 10.1242/Jcs.00896  0.792
2003 Hua Z, Graham TR. Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Molecular Biology of the Cell. 14: 4971-83. PMID 12960419 DOI: 10.1091/Mbc.E03-07-0463  0.787
2002 Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Current Biology : Cb. 12: 1623-7. PMID 12372257 DOI: 10.1016/S0960-9822(02)01148-X  0.808
2002 Hua Z, Fatheddin P, Graham TR. An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Molecular Biology of the Cell. 13: 3162-77. PMID 12221123 DOI: 10.1091/Mbc.E02-03-0172  0.807
2000 Gall WE, Higginbotham MA, Chen CY, Ingram MF, Cyr DM, Graham TR. The auxilin-like phosphoprotein Swa2p, is required for clathrin function in yeast Current Biology. 10: 1349-1358. PMID 11084334 DOI: 10.1016/S0960-9822(00)00771-5  0.714
2000 Hopkins BD, Sato K, Nakano A, Graham TR. Introduction of Kex2 cleavage sites in fusion proteins for monitoring localization and transport in yeast secretory pathway. Methods in Enzymology. 327: 107-18. PMID 11044978  0.786
2000 Brigance WT, Barlowe C, Graham TR. Organization of the yeast Golgi complex into at least four functionally distinct compartments. Molecular Biology of the Cell. 11: 171-82. PMID 10637300 DOI: 10.1091/Mbc.11.1.171  0.674
2000 Chen CY, Ingram MF, Rosal PH, Graham TR. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. The Journal of Cell Biology. 147: 1223-36. PMID 10601336 DOI: 10.1083/JCB.147.6.1223  0.509
1998 Reynolds TB, Hopkins BD, Lyons MR, Graham TR. The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase. The Journal of Cell Biology. 143: 935-46. PMID 9817752 DOI: 10.1083/jcb.143.4.935  0.774
1998 Gaynor EC, Graham TR, Emr SD. COPI in ER/Golgi and intra-Golgi transport: Do yeast COPI mutants point the way? Biochimica Et Biophysica Acta - Molecular Cell Research. 1404: 33-51. PMID 9714721 DOI: 10.1016/S0167-4889(98)00045-7  0.667
1998 Gaynor EC, Chen CY, Emr SD, Graham TR. ARF is required for maintenance of yeast Golgi and endosome structure and function Molecular Biology of the Cell. 9: 653-670. PMID 9487133 DOI: 10.1091/Mbc.9.3.653  0.675
1995 Graham TR, Krasnov VA. Sorting of yeast alpha 1,3 mannosyltransferase is mediated by a lumenal domain interaction, and a transmembrane domain signal that can confer clathrin-dependent Golgi localization to a secreted protein. Molecular Biology of the Cell. 6: 809-24. PMID 7579696 DOI: 10.1091/mbc.6.7.809  0.388
1995 Krasnov V, Graham TR. The Golgi complex of Saccharomyces cerevisiae Canadian Journal of Botany. 73: 343-346. DOI: 10.1139/b95-265  0.319
1994 Graham TR, Seeger M, Payne GS, MacKay VL, Emr SD. Clathrin-dependent localization of alpha 1,3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. The Journal of Cell Biology. 127: 667-78. PMID 7962051 DOI: 10.1083/jcb.127.3.667  0.649
1994 Gaynor EC, Te Heesen S, Graham TR, Aebi M, Emr SD. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast Journal of Cell Biology. 127: 653-665. PMID 7962050 DOI: 10.1083/Jcb.127.3.653  0.631
1993 Graham TR, Scott PA, Emr SD. Brefeldin A reversibly blocks early but not late protein transport steps in the secretory pathway Embo Journal. 12: 869-877. PMID 8458343  0.604
1991 Graham TR, Emr SD. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant Journal of Cell Biology. 114: 207-218. PMID 2071670 DOI: 10.1016/0962-8924(91)90024-4  0.643
1991 Robinson JS, Graham TR, Emr SD. A putative zinc finger protein, Saccharomyces cerevisiae Vps18p, affects late Golgi functions required for vacuolar protein sorting and efficient α- factor prohormone maturation Molecular and Cellular Biology. 11: 5813-5824. PMID 1840635 DOI: 10.1128/Mcb.11.12.5813  0.587
1990 Vida TA, Graham TR, Emr SD. In vitro reconstitution of intercompartmental protein transport to the yeast vacuole Journal of Cell Biology. 111: 2871-2884. PMID 2269659 DOI: 10.1083/Jcb.111.6.2871  0.596
1983 Cladaras MH, Graham T, Kaplan A. Interaction of Dictyostelium discoideum alpha-mannosidase with beef liver phosphomannosyl receptor. Effect of alkaline phosphatase treatment. Biochemical and Biophysical Research Communications. 116: 541-6. PMID 6316955 DOI: 10.1016/0006-291x(83)90557-0  0.446
Show low-probability matches.