Year |
Citation |
Score |
2021 |
Serlin HK, Fox EA. Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Autonomic Neuroscience : Basic & Clinical. 233: 102811. PMID 33932866 DOI: 10.1016/j.autneu.2021.102811 |
0.391 |
|
2019 |
Serlin HK, Fox EA. Abdominal vagotomy reveals majority of small intestinal mucosal afferents labeled in na 1.8cre-rosa26tdTomato mice are vagal in origin. The Journal of Comparative Neurology. PMID 31618460 DOI: 10.1002/Cne.24791 |
0.449 |
|
2017 |
Gilland KE, Fox EA. Effect of Food Deprivation or Short-term Western Diet Feeding on BDNF Protein Expression in the Hypothalamic Arcuate, Paraventricular, and Ventromedial Nuclei. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. ajpregu.00256.2016. PMID 28202438 DOI: 10.1152/Ajpregu.00256.2016 |
0.414 |
|
2015 |
Fox E, Biddinger J, McAdams J. Smooth muscle-derived neurotrophins regulate development and function of vagal gastrointestinal (GI) afferents Autonomic Neuroscience. 192: 58. DOI: 10.1016/j.autneu.2015.07.017 |
0.741 |
|
2014 |
Biddinger JE, Fox EA. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 10379-93. PMID 25080597 DOI: 10.1523/Jneurosci.1042-14.2014 |
0.78 |
|
2013 |
Fox EA, Biddinger JE, Baquet ZC, Jones KR, McAdams J. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 305: R1307-22. PMID 24068045 DOI: 10.1152/Ajpregu.00337.2013 |
0.786 |
|
2013 |
Fox EA, Biddinger JE, Jones KR, McAdams J, Worman A. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice. Neuroscience. 229: 176-99. PMID 23069761 DOI: 10.1016/J.Neuroscience.2012.09.078 |
0.774 |
|
2013 |
Fox EA. Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF. Clinical Autonomic Research : Official Journal of the Clinical Autonomic Research Society. 23: 15-31. PMID 22717678 DOI: 10.1007/S10286-012-0170-X |
0.403 |
|
2013 |
Fox E, Biddinger J, McAdams J. Smooth muscle-derived neurotrophins regulate development and function of vagal gastrointestinal (GI) afferents Autonomic Neuroscience. 177: 297. DOI: 10.1016/J.Autneu.2013.08.003 |
0.748 |
|
2012 |
Fox EA, Biddinger JE. Early postnatal overnutrition: potential roles of gastrointestinal vagal afferents and brain-derived neurotrophic factor. Physiology & Behavior. 106: 400-12. PMID 22712064 DOI: 10.1016/J.Physbeh.2012.04.002 |
0.782 |
|
2012 |
Fox EA. Treating diet-induced obesity: a new role for vagal afferents? Digestive Diseases and Sciences. 57: 1115-7. PMID 22438205 DOI: 10.1007/S10620-012-2122-7 |
0.37 |
|
2011 |
Ratcliffe EM, Farrar NR, Fox EA. Development of the vagal innervation of the gut: steering the wandering nerve. Neurogastroenterology and Motility : the Official Journal of the European Gastrointestinal Motility Society. 23: 898-911. PMID 21851506 DOI: 10.1111/J.1365-2982.2011.01764.X |
0.371 |
|
2011 |
Fox E, Biddinger J, Jones K, McAdams J, Worman A. Hyperphagia and obesity in mice with genetic ablation of gastrointestinal brain-derived neurotrophic factor Autonomic Neuroscience. 163: 77-78. DOI: 10.1016/J.Autneu.2011.05.112 |
0.741 |
|
2010 |
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. The Journal of Comparative Neurology. 518: 2934-51. PMID 20533354 DOI: 10.1002/Cne.22372 |
0.596 |
|
2010 |
Biddinger JE, Fox EA. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition. Physiology & Behavior. 101: 184-91. PMID 20403369 DOI: 10.1016/J.Physbeh.2010.04.011 |
0.769 |
|
2010 |
Fox EA, McAdams J. Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell and Tissue Research. 340: 267-86. PMID 20387078 DOI: 10.1007/S00441-010-0959-7 |
0.422 |
|
2008 |
Fox EA, Murphy MC. Factors regulating vagal sensory development: potential role in obesities of developmental origin. Physiology & Behavior. 94: 90-104. PMID 18234244 DOI: 10.1016/J.Physbeh.2007.11.024 |
0.626 |
|
2008 |
Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LW, Huizinga JD. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterology and Motility : the Official Journal of the European Gastrointestinal Motility Society. 20: 69-79. PMID 17931338 DOI: 10.1111/J.1365-2982.2007.00990.X |
0.657 |
|
2007 |
Murphy MC, Fox EA. Anterograde tracing method using DiI to label vagal innervation of the embryonic and early postnatal mouse gastrointestinal tract. Journal of Neuroscience Methods. 163: 213-25. PMID 17418900 DOI: 10.1016/J.Jneumeth.2007.03.001 |
0.567 |
|
2007 |
Fox EA, Murphy MC. Neurotrophin regulation of development of vagal innervation of the gastrointestinal tract Autonomic Neuroscience. 135: 32. DOI: 10.1016/J.Autneu.2007.06.034 |
0.56 |
|
2006 |
Fox EA. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Autonomic Neuroscience : Basic & Clinical. 126: 9-29. PMID 16677865 DOI: 10.1016/J.Autneu.2006.03.005 |
0.443 |
|
2006 |
Byerly MS, Fox EA. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake. Neuroscience Letters. 400: 240-5. PMID 16530962 DOI: 10.1016/J.Neulet.2006.02.047 |
0.395 |
|
2004 |
Chi MM, Fan G, Fox EA. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 287: R1044-53. PMID 15297267 DOI: 10.1152/Ajpregu.00420.2004 |
0.631 |
|
2004 |
Fox EA, Byerly MS. A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 286: R994-1004. PMID 15142855 DOI: 10.1152/Ajpregu.00727.2003 |
0.434 |
|
2002 |
Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anatomy and Embryology. 205: 325-42. PMID 12136263 DOI: 10.1007/S00429-002-0261-X |
0.737 |
|
2001 |
Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 21: 8602-15. PMID 11606648 DOI: 10.1523/Jneurosci.21-21-08602.2001 |
0.716 |
|
2001 |
Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL. C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anatomy and Embryology. 204: 11-26. PMID 11506430 DOI: 10.1007/S004290100184 |
0.693 |
|
2000 |
Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. The Journal of Comparative Neurology. 428: 558-76. PMID 11074451 DOI: 10.1002/1096-9861(20001218)428:3<558::Aid-Cne11>3.0.Co;2-M |
0.696 |
|
1992 |
Fox EA, Powley TL. Morphology of identified preganglionic neurons in the dorsal motor nucleus of the vagus. The Journal of Comparative Neurology. 322: 79-98. PMID 1385488 DOI: 10.1002/Cne.903220107 |
0.568 |
|
1991 |
Berthoud HR, Fox EA, Powley TL. Abdominal pathways and central origin of rat vagal fibers that stimulate gastric acid. Gastroenterology. 100: 627-37. PMID 1993485 DOI: 10.1016/0016-5085(91)80006-U |
0.566 |
|
1990 |
Berthoud HR, Fox EA, Powley TL. Localization of vagal preganglionics that stimulate insulin and glucagon secretion. The American Journal of Physiology. 258: R160-8. PMID 1967914 DOI: 10.1152/Ajpregu.1990.258.1.R160 |
0.55 |
|
1989 |
Fox EA, Powley TL. False-positive artifacts of tracer strategies distort autonomic connectivity maps. Brain Research. Brain Research Reviews. 14: 53-77. PMID 2470452 DOI: 10.1016/0165-0173(89)90009-X |
0.557 |
|
1987 |
Powley TL, Fox EA, Berthoud HR. Retrograde tracer technique for assessment of selective and total subdiaphragmatic vagotomies. The American Journal of Physiology. 253: R361-70. PMID 3618835 DOI: 10.1152/Ajpregu.1987.253.2.R361 |
0.556 |
|
1986 |
Powley TL, Fox EA. Vagotomy does not alter circannual body weight cycles in the hibernator Citellus lateralis. Brain Research. 364: 159-61. PMID 3947960 DOI: 10.1016/0006-8993(86)90996-0 |
0.524 |
|
1986 |
Fox EA, Powley TL. Tracer diffusion has exaggerated CNS maps of direct preganglionic innervation of pancreas. Journal of the Autonomic Nervous System. 15: 55-69. PMID 3512681 DOI: 10.1016/0165-1838(86)90079-2 |
0.578 |
|
1985 |
Fox EA, Powley TL. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Research. 341: 269-82. PMID 4041795 DOI: 10.1016/0006-8993(85)91066-2 |
0.585 |
|
1985 |
Sterner MR, Fox EA, Powley TL. A retrograde tracer strategy using True Blue to label the preganglionic parasympathetic innervation of the abdominal viscera. Journal of Neuroscience Methods. 14: 273-80. PMID 2414608 DOI: 10.1016/0165-0270(85)90090-1 |
0.546 |
|
1984 |
Fox EA, Powley TL. Regeneration may mediate the sparing of VMH obesity observed with prior vagotomy. The American Journal of Physiology. 247: R308-17. PMID 6380315 |
0.522 |
|
1983 |
Powley TL, Prechtl JC, Fox EA, Berthoud HR. Anatomical considerations for surgery of the rat abdominal vagus: distribution, paraganglia and regeneration. Journal of the Autonomic Nervous System. 9: 79-97. PMID 6663017 DOI: 10.1016/0165-1838(83)90133-9 |
0.591 |
|
Show low-probability matches. |