Michael Beyeler - Publications

Affiliations: 
University of Washington, Seattle, Seattle, WA 
Area:
Computational neuroscience, visual prostheses

7 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Beyeler M, Rounds EL, Carlson KD, Dutt N, Krichmar JL. Neural correlates of sparse coding and dimensionality reduction. Plos Computational Biology. 15: e1006908. PMID 31246948 DOI: 10.1371/journal.pcbi.1006908  1
2019 Beyeler M, Nanduri D, Weiland JD, Rokem A, Boynton GM, Fine I. A model of ganglion axon pathways accounts for percepts elicited by retinal implants. Scientific Reports. 9: 9199. PMID 31235711 DOI: 10.1038/s41598-019-45416-4  1
2017 Beyeler M, Rokem A, Boynton G, Fine I. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. Journal of Neural Engineering. PMID 28612755 DOI: 10.1088/1741-2552/aa795e  0.92
2016 Beyeler M, Dutt N, Krichmar JL. 3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 8399-415. PMID 27511012 DOI: 10.1523/JNEUROSCI.0396-16.2016  1
2015 Beyeler M, Oros N, Dutt N, Krichmar JL. A GPU-accelerated cortical neural network model for visually guided robot navigation. Neural Networks : the Official Journal of the International Neural Network Society. PMID 26494281 DOI: 10.1016/j.neunet.2015.09.005  1
2014 Beyeler M, Richert M, Dutt ND, Krichmar JL. Efficient spiking neural network model of pattern motion selectivity in visual cortex. Neuroinformatics. 12: 435-54. PMID 24497233 DOI: 10.1007/s12021-014-9220-y  1
2013 Beyeler M, Dutt ND, Krichmar JL. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule. Neural Networks : the Official Journal of the International Neural Network Society. 48: 109-24. PMID 23994510 DOI: 10.1016/j.neunet.2013.07.012  1
Show low-probability matches.