Susan P. Gilbert - Publications

Affiliations: 
Biological Sciences Dartmouth College, Hanover, NH, United States 

79 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2021 Dutta M, Gilbert SP, Onuchic JN, Jana B. Mechanistic basis of propofol-induced disruption of kinesin processivity. Proceedings of the National Academy of Sciences of the United States of America. 118. PMID 33495322 DOI: 10.1073/pnas.2023659118  0.348
2020 Quinn SM, Vargason T, Pokhrel N, Antony E, Hahn J, Gilbert SP. KIF3A accelerates KIF3C within the kinesin-2 heterodimer to generate symmetrical phosphate release rates for each processive step. The Journal of Biological Chemistry. 296: 100020. PMID 33410416 DOI: 10.1074/jbc.RA120.015272  0.768
2020 Quinn SM, Vargason T, Pokhrel N, Antony E, Hahn J, Gilbert SP. KIF3A accelerates KIF3C within the kinesin-2 heterodimer to generate symmetrical phosphate release rates for each processive step. The Journal of Biological Chemistry. PMID 33144324 DOI: 10.1074/jbc.RA120.015272  0.768
2020 Bensel BM, Woody MS, Pyrpassopoulos S, Goldman YE, Gilbert SP, Ostap EM. The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America. PMID 32571914 DOI: 10.1073/Pnas.1916343117  0.476
2019 Deeb SK, Guzik-Lendrum S, Jeffrey JD, Gilbert SP. The ability of the kinesin-2 heterodimer KIF3AC to navigate microtubule networks is provided by the KIF3A motor domain. The Journal of Biological Chemistry. PMID 31748411 DOI: 10.1074/Jbc.Ra119.010725  0.514
2018 Quinn SM, Howsmon DP, Hahn J, Gilbert SP. Kinesin-2 heterodimerization alters entry into a processive run along the microtubule but not stepping within the run. The Journal of Biological Chemistry. PMID 29991594 DOI: 10.1074/Jbc.Ra118.002767  0.779
2018 Woll KA, Guzik-Lendrum S, Bensel BM, Bhanu NV, Dailey WP, Garcia BA, Gilbert SP, Eckenhoff RG. An allosteric propofol-binding site in kinesin disrupts kinesin-mediated processive movement on microtubules. The Journal of Biological Chemistry. PMID 29844014 DOI: 10.1074/Jbc.Ra118.002182  0.565
2018 Gilbert SP, Guzik-Lendrum S, Rayment I. Kinesin-2 motors: kinetics and biophysics. The Journal of Biological Chemistry. PMID 29444824 DOI: 10.1074/Jbc.R117.001324  0.45
2017 Guzik-Lendrum S, Rayment I, Gilbert SP. Homodimeric Kinesin-2 KIF3CC Promotes Microtubule Dynamics. Biophysical Journal. 113: 1845-1857. PMID 29045878 DOI: 10.1016/J.Bpj.2017.09.015  0.475
2017 Bensel BM, Guzik-Lendrum S, Masucci EM, Woll KA, Eckenhoff RG, Gilbert SP. Common general anesthetic propofol impairs kinesin processivity. Proceedings of the National Academy of Sciences of the United States of America. PMID 28484025 DOI: 10.1073/Pnas.1701482114  0.516
2016 Albracht CD, Guzik-Lendrum S, Rayment I, Gilbert SP. Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run. The Journal of Biological Chemistry. PMID 27637334 DOI: 10.1074/Jbc.M116.752196  0.546
2016 Phillips RK, Peter LG, Gilbert SP, Rayment I. Family-specific kinesin structures reveal neck-linker length based on initiation of the coiled-coil. The Journal of Biological Chemistry. PMID 27462072 DOI: 10.1074/Jbc.M116.737577  0.447
2016 Planelles-Herrero VJ, Blanc F, Sirigu S, Sirkia H, Clause J, Sourigues Y, Johnsrud DO, Amigues B, Cecchini M, Gilbert SP, Houdusse A, Titus MA. Myosin MyTH4-FERM structures highlight important principles of convergent evolution. Proceedings of the National Academy of Sciences of the United States of America. PMID 27166421 DOI: 10.1073/Pnas.1600736113  0.433
2015 Zhang P, Rayment I, Gilbert SP. Kinesin-2 KIF3AC: Fast or Slow Either Head Can Start the Processive Run. The Journal of Biological Chemistry. PMID 26710851 DOI: 10.1074/Jbc.M115.705970  0.594
2015 Guzik-Lendrum S, Rank KC, Bensel BM, Taylor KC, Rayment I, Gilbert SP. Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules. Biophysical Journal. 109: 1472-82. PMID 26445448 DOI: 10.1016/J.Bpj.2015.08.004  0.486
2015 Zhang P, Dai W, Hahn J, Gilbert SP. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s. Proceedings of the National Academy of Sciences of the United States of America. 112: 6359-64. PMID 25941402 DOI: 10.1073/Pnas.1505531112  0.749
2015 Guzik-Lendrum S, Rank KC, Bensel B, Rayment I, Gilbert SP. Why are Kinesin-2 KIF3AB and KIF3AC so Processive? Biophysical Journal. 108: 21. DOI: 10.1016/J.Bpj.2014.11.139  0.462
2014 Albracht CD, Rank KC, Obrzut S, Rayment I, Gilbert SP. Kinesin-2 KIF3AB exhibits novel ATPase characteristics. The Journal of Biological Chemistry. 289: 27836-48. PMID 25122755 DOI: 10.1074/Jbc.M114.583914  0.549
2013 Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A. Common mechanistic themes for the powerstroke of kinesin-14 motors. Journal of Structural Biology. 184: 335-44. PMID 24099757 DOI: 10.1016/J.Jsb.2013.09.020  0.496
2013 Cope J, Rank KC, Gilbert SP, Rayment I, Hoenger A. Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules. Plos One. 8: e53792. PMID 23342004 DOI: 10.1371/Journal.Pone.0053792  0.547
2013 Gilbert SP. Kinesin-14: A League of their Own Biophysical Journal. 104. DOI: 10.1016/J.Bpj.2012.11.043  0.537
2012 Chen CJ, Porche K, Rayment I, Gilbert SP. The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke. The Journal of Biological Chemistry. 287: 36673-82. PMID 22977241 DOI: 10.1074/Jbc.M112.395590  0.596
2012 Rank KC, Chen CJ, Cope J, Porche K, Hoenger A, Gilbert SP, Rayment I. Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. The Journal of Cell Biology. 197: 957-70. PMID 22734002 DOI: 10.1083/Jcb.201201132  0.567
2012 Sardar HS, Gilbert SP. Microtubule capture by mitotic kinesin centromere protein E (CENP-E). The Journal of Biological Chemistry. 287: 24894-904. PMID 22637578 DOI: 10.1074/Jbc.M112.376830  0.457
2011 Chen CJ, Rayment I, Gilbert SP. Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking. The Journal of Biological Chemistry. 286: 29261-72. PMID 21680740 DOI: 10.1074/Jbc.M111.255554  0.555
2011 Chen CJ, Gilbert SP. Mitotic Kinesin Kar3Cik1 Interaction with Microtubules Biophysical Journal. 100: 124. DOI: 10.1016/J.Bpj.2010.12.882  0.563
2011 Sardar HS, Gilbert SP. Mechanistic Analysis of Human Mitotic Kinesin CENP-E Biophysical Journal. 100. DOI: 10.1016/J.Bpj.2010.12.3095  0.59
2010 Sardar HS, Luczak VG, Lopez MM, Lister BC, Gilbert SP. Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Current Biology : Cb. 20: 1648-53. PMID 20797864 DOI: 10.1016/J.Cub.2010.08.001  0.409
2010 Cope J, Gilbert S, Rayment I, Mastronarde D, Hoenger A. Cryo-electron tomography of microtubule-kinesin motor complexes. Journal of Structural Biology. 170: 257-65. PMID 20025975 DOI: 10.1016/J.Jsb.2009.12.004  0.461
2010 Cedeno K, Gilbert SP. The Effects of Removal of C-termini of Tubulin for Mitotic Kinesin CENP-E Microtubule Interactions Biophysical Journal. 98. DOI: 10.1016/J.Bpj.2009.12.894  0.406
2009 McIntosh JR, Morphew MK, Grissom PM, Gilbert SP, Hoenger A. Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. Journal of Molecular Biology. 394: 177-82. PMID 19769986 DOI: 10.1016/J.Jmb.2009.09.033  0.413
2009 chen cj, Gilbert SP. Mechanistic Analysis of Kar3Cik1 for Mitotic Function Biophysical Journal. 96: 5-9. DOI: 10.1016/J.Bpj.2008.12.2626  0.538
2009 Sardar HS, Gilbert SP. Dimeric Centromere Protein E (CENP-E) Promotes Microtubule-elongation At The Plus-ends Of Microtubules Biophysical Journal. 96: 2-6. DOI: 10.1016/J.Bpj.2008.12.1896  0.38
2008 Krzysiak TC, Grabe M, Gilbert SP. Getting in sync with dimeric Eg5. Initiation and regulation of the processive run. The Journal of Biological Chemistry. 283: 2078-87. PMID 18037705 DOI: 10.1074/Jbc.M708354200  0.6
2007 Allingham JS, Sproul LR, Rayment I, Gilbert SP. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell. 128: 1161-72. PMID 17382884 DOI: 10.1016/J.Cell.2006.12.046  0.537
2007 Valentine MT, Gilbert SP. To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5. Current Opinion in Cell Biology. 19: 75-81. PMID 17188855 DOI: 10.1016/J.Ceb.2006.12.011  0.552
2006 Krzysiak TC, Gilbert SP. Dimeric Eg5 maintains processivity through alternating-site catalysis with rate-limiting ATP hydrolysis. The Journal of Biological Chemistry. 281: 39444-54. PMID 17062577 DOI: 10.1074/Jbc.M608056200  0.615
2006 Cochran JC, Krzysiak TC, Gilbert SP. Pathway of ATP hydrolysis by monomeric kinesin Eg5. Biochemistry. 45: 12334-44. PMID 17014086 DOI: 10.1021/Bi0608562  0.565
2006 Krzysiak TC, Wendt T, Sproul LR, Tittmann P, Gross H, Gilbert SP, Hoenger A. A structural model for monastrol inhibition of dimeric kinesin Eg5. The Embo Journal. 25: 2263-73. PMID 16642039 DOI: 10.1038/Sj.Emboj.7601108  0.509
2006 Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nature Cell Biology. 8: 470-6. PMID 16604065 DOI: 10.1038/Ncb1394  0.525
2006 Hertzer KM, Ems-McClung SC, Kline-Smith SL, Lipkin TG, Gilbert SP, Walczak CE. Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK. Molecular Biology of the Cell. 17: 700-10. PMID 16291860 DOI: 10.1091/Mbc.E05-08-0821  0.511
2005 Cochran JC, Gilbert SP. ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol. Biochemistry. 44: 16633-48. PMID 16342954 DOI: 10.1021/Bi051724W  0.547
2005 Cui W, Sproul LR, Gustafson SM, Matthies HJ, Gilbert SP, Hawley RS. Drosophila Nod protein binds preferentially to the plus ends of microtubules and promotes microtubule polymerization in vitro. Molecular Biology of the Cell. 16: 5400-9. PMID 16148044 DOI: 10.1091/Mbc.E05-06-0582  0.48
2005 Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP. Cik1 targets the minus-end Kinesin depolymerase Kar3 to microtubule plus ends Current Biology. 15: 1420-1427. PMID 16085496 DOI: 10.1016/J.Cub.2005.06.066  0.57
2005 Cochran JC, Gatial JE, Kapoor TM, Gilbert SP. Monastrol inhibition of the mitotic kinesin Eg5. The Journal of Biological Chemistry. 280: 12658-67. PMID 15665380 DOI: 10.1074/Jbc.M413140200  0.588
2004 Mackey AT, Sproul LR, Sontag CA, Satterwhite LL, Correia JJ, Gilbert SP. Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3. The Journal of Biological Chemistry. 279: 51354-61. PMID 15385545 DOI: 10.1074/Jbc.M406268200  0.553
2004 Cochran JC, Sontag CA, Maliga Z, Kapoor TM, Correia JJ, Gilbert SP. Mechanistic analysis of the mitotic kinesin Eg5. The Journal of Biological Chemistry. 279: 38861-70. PMID 15247293 DOI: 10.1074/Jbc.M404203200  0.509
2004 Klumpp LM, Brendza KM, Gatial JE, Hoenger A, Saxton WM, Gilbert SP. Microtubule-kinesin interface mutants reveal a site critical for communication. Biochemistry. 43: 2792-803. PMID 15005614 DOI: 10.1021/Bi035830E  0.554
2004 Klumpp LM, Hoenger A, Gilbert SP. Kinesin's second step. Proceedings of the National Academy of Sciences of the United States of America. 101: 3444-9. PMID 14985504 DOI: 10.1073/Pnas.0307691101  0.55
2004 Skiniotis G, Cochran JC, Müller J, Mandelkow E, Gilbert SP, Hoenger A. Modulation of kinesin binding by the C-termini of tubulin. The Embo Journal. 23: 989-99. PMID 14976555 DOI: 10.1038/Sj.Emboj.7600118  0.516
2003 Klumpp LM, Mackey AT, Farrell CM, Rosenberg JM, Gilbert SP. A kinesin switch I arginine to lysine mutation rescues microtubule function. The Journal of Biological Chemistry. 278: 39059-67. PMID 12860992 DOI: 10.1074/Jbc.M304250200  0.56
2003 Klumpp LM, Brendza KM, Rosenberg JM, Hoenger A, Gilbert SP. Motor domain mutation traps kinesin as a microtubule rigor complex. Biochemistry. 42: 2595-606. PMID 12614154 DOI: 10.1021/Bi026715R  0.566
2003 Mackey AT, Gilbert SP. The ATPase cross-bridge cycle of the Kar3 motor domain. Implications for single head motility. The Journal of Biological Chemistry. 278: 3527-35. PMID 12446697 DOI: 10.1074/Jbc.M206219200  0.535
2002 Farrell CM, Mackey AT, Klumpp LM, Gilbert SP. The role of ATP hydrolysis for kinesin processivity. The Journal of Biological Chemistry. 277: 17079-87. PMID 11864969 DOI: 10.1074/Jbc.M108793200  0.602
2001 Gilbert SP. High-performance fungal motors. Nature. 414: 597-598. PMID 11740544 DOI: 10.1038/414597A  0.385
2001 Foster KA, Mackey AT, Gilbert SP. A mechanistic model for Ncd directionality. The Journal of Biological Chemistry. 276: 19259-66. PMID 11278404 DOI: 10.1074/Jbc.M008347200  0.615
2001 Sullivan CS, Gilbert SP, Pipas JM. ATP-dependent simian virus 40 T-antigen-Hsc70 complex formation Journal of Virology. 75: 1601-1610. PMID 11160658 DOI: 10.1128/Jvi.75.4.1601-1610.2001  0.311
2000 Gilbert SP, Mackey AT. Kinetics: A tool to study molecular motors Methods. 22: 337-354. PMID 11133240 DOI: 10.1006/Meth.2000.1086  0.458
2000 Brendza KM, Sontag CA, Saxton WM, Gilbert SP. A kinesin mutation that uncouples motor domains and desensitizes the γ-phosphate sensor Journal of Biological Chemistry. 275: 22187-22195. PMID 10767290 DOI: 10.1074/Jbc.M001124200  0.547
2000 Mackey AT, Gilbert SP. Moving a microtubule may require two heads: A kinetic investigation of monomeric Ncd Biochemistry. 39: 1346-1355. PMID 10684615 DOI: 10.1021/Bi991918+  0.573
2000 Foster KA, Gilbert SP. Kinetic studies of dimeric Ncd: evidence that Ncd is not processive. Biochemistry. 39: 1784-91. PMID 10677228 DOI: 10.1021/Bi991500B  0.5
1999 Titus MA, Gilbert SP. The diversity of molecular motors: An overview Cellular and Molecular Life Sciences. 56: 181-183. PMID 11212346 DOI: 10.1007/S000180050420  0.45
1999 Brendza KM, Rese DJ, Gilbert SP, Saxton WM. Lethal kinesin mutations reveal amino acids important for ATPase activation and structural coupling Journal of Biological Chemistry. 274: 31506-31514. PMID 10531353 DOI: 10.1074/Jbc.274.44.31506  0.512
1999 Iyadurai SJ, Li MG, Gilbert SP, Hays TS. Evidence for cooperative interactions between the two motor domains of cytoplasmic dynein Current Biology. 9: 771-774. PMID 10421581 DOI: 10.1016/S0960-9822(99)80340-6  0.532
1998 Foster KA, Correia JJ, Gilbert SP. Equilibrium binding studies of non-claret disjunctional protein (Ncd) reveal cooperative interactions between the motor domains. The Journal of Biological Chemistry. 273: 35307-18. PMID 9857072 DOI: 10.1074/Jbc.273.52.35307  0.57
1998 Moyer ML, Gilbert SP, Johnson KA. Pathway of ATP hydrolysis by monomeric and dimeric kinesin Biochemistry. 37: 800-813. PMID 9454569 DOI: 10.1021/Bi9711184  0.635
1998 Gilbert SP, Moyer ML, Johnson KA. Alternating site mechanism of the kinesin ATPase Biochemistry. 37: 792-799. PMID 9454568 DOI: 10.1021/Bi971117B  0.691
1996 Moyer ML, Gilbert SP, Johnson KA. Purification and characterization of two monomeric kinesin constructs Biochemistry. 35: 6321-6329. PMID 8639576 DOI: 10.1021/Bi960017N  0.527
1995 Gilbert SP, Webb MR, Brune M, Johnson KA. Pathway of processive ATP hydrolysis by kinesin Nature. 373: 671-676. PMID 7854446 DOI: 10.1038/373671A0  0.68
1995 Correia JJ, Gilbert SP, Moyer ML, Johnson KA. Sedimentation studies on the kinesin motor domain constructs K401, K366, and K341. Biochemistry. 34: 4898-907. PMID 7718594 DOI: 10.1021/Bi00014A047  0.579
1994 Gilbert SP, Johnson KA. Pre-steady-state kinetics of the microtubule·kinesin ATPase Biochemistry. 33: 1951-1960. PMID 8110800 DOI: 10.1021/Bi00173A044  0.574
1993 Gilbert SP, Johnson KA. Expression, purification, and characterization of the Drosophila kinesin motor domain produced in Escherichia coli Biochemistry. 32: 4677-4684. PMID 8485145 DOI: 10.1021/Bi00068A028  0.627
1993 Harrison BC, Marchese-Ragona SP, Gilbert SP, Cheng N, Steven AC, Johnson KA. Decoration of the microtubule surface by one kinesin head per tubulin heterodimer Nature. 362: 73-75. PMID 8095324 DOI: 10.1038/362073A0  0.646
1989 Gilbert SP, Sloboda RD. A squid dynein isoform promotes axoplasmic vesicle translocation. The Journal of Cell Biology. 109: 2379-94. PMID 2478567 DOI: 10.1083/Jcb.109.5.2379  0.664
1988 Do CV, Sears EB, Gilbert SP, Sloboda RD. Vesikin, a vesicle associated ATPase from squid axoplasm and optic lobe, has characteristics in common with vertebrate brain MAP 1 and MAP 2. Cell Motility and the Cytoskeleton. 10: 246-54. PMID 2460257 DOI: 10.1002/Cm.970100129  0.666
1986 Gilbert SP, Sloboda RD. Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules. The Journal of Cell Biology. 103: 947-56. PMID 3091608 DOI: 10.1083/JCB.103.3.947  0.698
1985 Gilbert SP, Allen RD, Sloboda RD. Translocation of vesicles from squid axoplasm on flagellar microtubules Nature. 315: 245-248. PMID 2582264 DOI: 10.1038/315245A0  0.724
1984 Gilbert SP, Sloboda RD. Bidirectional transport of fluorescently labeled vesicles introduced into extruded axoplasm of squid Loligo pealei. The Journal of Cell Biology. 99: 445-52. PMID 6204992 DOI: 10.1083/JCB.99.2.445  0.64
1982 Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP. Fast axonal transport in squid giant axon. Science (New York, N.Y.). 218: 1127-9. PMID 6183744 DOI: 10.1126/Science.6183744  0.313
Show low-probability matches.