Colm Durkan, Ph.D - Publications

Affiliations: 
Engineering University of Cambridge, Cambridge, England, United Kingdom 

35 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Alloway RM, Mong J, Jephson IW, Wood MH, Casford MTL, Grice P, Filip SV, Salama IE, Durkan C, Clarke SM. The adsorption of 4-n-nonylphenol, carvacrol and ethanol onto iron oxide from non-aqueous hydrocarbon solvents. Langmuir : the Acs Journal of Surfaces and Colloids. PMID 31422665 DOI: 10.1021/Acs.Langmuir.9B01863  0.498
2019 Kaimaki D, Haire BT, Ryan HP, Jiménez-Serratos G, Alloway RM, Little M, Morrison J, Salama IE, Tillotson MJ, Smith BE, Moorhouse SJ, Totton TS, Hodges M, Yeates SG, Quayle P, ... ... Durkan C, et al. Multiscale Approach Linking Self-Aggregation and Surface Interactions of Synthesized Foulants to Fouling Mitigation Strategies Energy & Fuels. 33: 7216-7224. DOI: 10.1021/Acs.Energyfuels.9B01390  0.694
2019 Wang N, Collins IR, Webb KJ, Wan Q, Durkan C. Probing the Interactions of Dolomite Surfaces with Oil at the Molecular Scale Energy & Fuels. 33: 6161-6169. DOI: 10.1021/Acs.Energyfuels.9B00972  0.438
2018 Kaimaki DM, Smith BE, Durkan C. On the use of nanomechanical atomic force microscopy to characterise oil-exposed surfaces. Rsc Advances. 8: 6680-6689. PMID 35540400 DOI: 10.1039/c7ra12209h  0.738
2018 Wang N, Barfoot R, Butler M, Durkan C. Effect of Surface Treatments on the Nanomechanical Properties of Human Hair. Acs Biomaterials Science & Engineering. 4: 3063-3071. PMID 33435026 DOI: 10.1021/Acsbiomaterials.8B00687  0.363
2018 Kaimaki D, Smith BE, Durkan C. On the use of nanomechanical atomic force microscopy to characterise oil-exposed surfaces Rsc Advances. 8: 6680-6689. DOI: 10.1039/C7Ra12209H  0.733
2016 Zhao Z, Wang N, Nan H, Shen L, Durkan C, He X. A novel paradigm for the fabrication of highly uniform nanowire arrays using residual stress-induced patterning Journal of Materials Chemistry C. 4: 5814-5821. DOI: 10.1039/C6Tc01653G  0.319
2015 Wang N, Durkan C. Nanometer scale investigations into oil-rich chalk formations Energy & Fuels. 29: 6896-6902. DOI: 10.1021/Acs.Energyfuels.5B00933  0.433
2015 Durkan C, Garcia-Melendrez JA, Ding L. On the Manipulation of Ferroelectric and Ferroelastic Domains at the Nanoscale Journal of Electronic Materials. 44: 2230-2242. DOI: 10.1007/S11664-015-3674-Z  0.314
2014 Durkan C, Wang N. Nanometre-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair. International Journal of Cosmetic Science. 36: 598-605. PMID 25220384 DOI: 10.1111/Ics.12161  0.356
2012 Wong HS, Durkan C. Shifting atomic patterns: on the origin of the different atomic-scale patterns of graphite as observed using scanning tunnelling microscopy. Nanotechnology. 23: 185703. PMID 22499165 DOI: 10.1088/0957-4484/23/18/185703  0.331
2012 Wong HS, Feng X, Müllen K, Chandrasekhar N, Durkan C. Channel selective tunnelling through a nanographene assembly. Nanotechnology. 23: 095601. PMID 22322294 DOI: 10.1088/0957-4484/23/9/095601  0.301
2012 Wong HS, Feng X, Yang ZY, Müllen K, Chandrasekhar N, Durkan C. Altering the ordering and disordering of a triangular nanographene at room temperature. Nanotechnology. 23: 015606. PMID 22156192 DOI: 10.1088/0957-4484/23/1/015606  0.344
2010 Durkan C, Chu DP, Ivry Y. Response to “Comment on ‘Nanometer resolution piezoreponse force microscopy to study deep submicron ferroelectric and ferroelastic domains’ ” [Appl. Phys. Lett. 97, 046101 (2010)] Applied Physics Letters. 97: 046102. DOI: 10.1063/1.3467006  0.318
2010 Yang Z, Durkan C. Edge and terrace structure of CoTPP on Au(1 1 1) investigated by ultra-high vacuum scanning tunnelling microscopy at room temperature Surface Science. 604: 660-665. DOI: 10.1016/J.Susc.2010.01.012  0.315
2009 Wong HS, Durkan C, Chandrasekhar N. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. Acs Nano. 3: 3455-62. PMID 19795900 DOI: 10.1021/Nn9011785  0.311
2009 Ivry Y, Chu D, Durkan C. Nanometer resolution piezoresponse force microscopy to study deep submicron ferroelectric and ferroelastic domains Applied Physics Letters. 94: 162903. DOI: 10.1063/1.3105942  0.321
2008 Ransley JHT, Aziz A, Durkan C, Seshia AA. Silicon depletion layer actuators Applied Physics Letters. 92: 184103. DOI: 10.1063/1.2920440  0.318
2008 Midgley PA, Durkan C. The frontiers of microscopy Materials Today. 11: 8-11. DOI: 10.1016/S1369-7021(09)70002-1  0.316
2005 Pong W, Bendall J, Durkan C. Observation of Large-Scale Features on Graphite by Scanning Tunnelling Microscopy Japanese Journal of Applied Physics. 44: 5443-5446. DOI: 10.1143/Jjap.44.5443  0.342
2005 Pong W, Durkan C. A review and outlook for an anomaly of scanning tunnelling microscopy (STM): superlattices on graphite Journal of Physics D: Applied Physics. 38: R329-R355. DOI: 10.1088/0022-3727/38/21/R01  0.373
2004 Gademann A, Shvets IV, Durkan C. Study of polarization-dependent energy coupling between near-field optical probe and mesoscopic metal structure Journal of Applied Physics. 95: 3988-3993. DOI: 10.1063/1.1649453  0.523
2003 Gademann A, Durkan C, Shvets IV. Optical impedance matching with scanning near-field optical microscopy Journal of Physics D: Applied Physics. 36: 2193-2197. DOI: 10.1088/0022-3727/36/18/003  0.509
2000 Durkan C, Welland ME. Investigations into local ferroelectric properties by atomic force microscopy Ultramicroscopy. 82: 141-148. PMID 10741663 DOI: 10.1016/S0304-3991(99)00134-5  0.385
2000 Kalkbrenner T, Graf M, Durkan C, Mlynek J, Sandoghdar V. High-contrast topography-free sample for near-field optical microscopy Applied Physics Letters. 76: 1206-1208. DOI: 10.1063/1.125984  0.309
2000 Durkan C, Chu DP, Migliorato P, Welland ME. Investigations into local piezoelectric properties by atomic force microscopy Applied Physics Letters. 76: 366-368. DOI: 10.1063/1.125756  0.388
2000 Durkan C, Welland M, Chu D, Migliorato P. Scaling of piezoelectric properties in nanometre to micrometre scale Electronics Letters. 36: 1538. DOI: 10.1049/El:20000291  0.303
1998 Durkan C, Shvets IV. Polarization effects in reflection-mode scanning near-field optical microscopy Journal of Applied Physics. 83: 1837-1843. DOI: 10.1063/1.366906  0.54
1998 Durkan C, Shvets IV. Reflection-mode scanning near-field optical microscopy: Influence of sample type, tip shape, and polarization of light Journal of Applied Physics. 83: 1171-1176. DOI: 10.1063/1.366812  0.527
1997 Durkan C, Shvets IV. Method for increasing shear-force detection sensitivity with uncoated fiber tips. Applied Optics. 36: 8173-8178. PMID 18264353 DOI: 10.1364/Ao.36.008173  0.499
1997 Durkan C, Lodder C, Shvets IV. Kerr-effect based magneto-optic imaging with sub-100 nm resolution (abstract) Journal of Applied Physics. 81: 5019-5019. DOI: 10.1063/1.364493  0.565
1997 Durkan C, Shvets IV, Lodder JC. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope Applied Physics Letters. 70: 1323-1325. DOI: 10.1063/1.118524  0.516
1996 Durkan C, Shvets IV. Investigation of the physical mechanisms of shear‐force imaging Journal of Applied Physics. 80: 5659-5664. DOI: 10.1063/1.363618  0.524
1996 Durkan C, Shvets IV. Study of shear force as a distance regulation mechanism for scanning near‐field optical microscopy Journal of Applied Physics. 79: 1219-1223. DOI: 10.1063/1.361014  0.56
1995 Durkan C, Shvets I. 40 nm resolution in reflection-mode SNOM with λ = 685 nm Ultramicroscopy. 61: 227-231. DOI: 10.1016/0304-3991(95)00114-X  0.527
Show low-probability matches.