Richard S. Sutton - Publications

Affiliations: 
University of Alberta, Edmonton, Alberta, Canada 
Area:
Reinforcement Learning
Website:
http://www.cs.ualberta.ca/~sutton/index.html

71 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Dohare S, Hernandez-Garcia JF, Lan Q, Rahman P, Mahmood AR, Sutton RS. Loss of plasticity in deep continual learning. Nature. 632: 768-774. PMID 39169245 DOI: 10.1038/s41586-024-07711-7  0.414
2024 Ghiassian S, Rafiee B, Sutton RS. Off-Policy Prediction Learning: An Empirical Study of Online Algorithms. Ieee Transactions On Neural Networks and Learning Systems. PMID 38857133 DOI: 10.1109/TNNLS.2024.3373749  0.333
2022 Rafiee B, Abbas Z, Ghiassian S, Kumaraswamy R, Sutton RS, Ludvig EA, White A. From eye-blinks to state construction: Diagnostic benchmarks for online representation learning. Adaptive Behavior. 31: 3-19. PMID 36618906 DOI: 10.1177/10597123221085039  0.717
2020 Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. Pavlovian control of intraspinal microstimulation to produce over-ground walking. Journal of Neural Engineering. PMID 32348970 DOI: 10.1088/1741-2552/Ab8E8E  0.671
2020 De Asis K, Chan A, Pitis S, Sutton R, Graves D. Fixed-Horizon Temporal Difference Methods for Stable Reinforcement Learning Proceedings of the Aaai Conference On Artificial Intelligence. 34: 3741-3748. DOI: 10.1609/aaai.v34i04.5784  0.414
2018 Travnik JB, Mathewson KW, Sutton RS, Pilarski PM. Reactive Reinforcement Learning in Asynchronous Environments. Frontiers in Robotics and Ai. 5: 79. PMID 33500958 DOI: 10.3389/frobt.2018.00079  0.316
2018 Travnik JB, Mathewson KW, Sutton RS, Pilarski PM. Reactive Reinforcement Learning in Asynchronous Environments Frontiers in Robotics and Ai. 5. DOI: 10.3389/frobt.2018.00079  0.437
2015 Edwards AL, Dawson MR, Hebert JS, Sherstan C, Sutton RS, Chan KM, Pilarski PM. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Prosthetics and Orthotics International. PMID 26423106 DOI: 10.1177/0309364615605373  0.44
2014 Kehoe EJ, Ludvig EA, Sutton RS. Time course of the rabbit's conditioned nictitating membrane movements during acquisition, extinction, and reacquisition. Learning & Memory (Cold Spring Harbor, N.Y.). 21: 585-90. PMID 25320350 DOI: 10.1101/Lm.034504.114  0.645
2014 Modayil J, White A, Sutton RS. Multi-timescale nexting in a reinforcement learning robot Adaptive Behavior. 22: 146-160. DOI: 10.1177/1059712313511648  0.465
2014 Mahmood AR, Van Hasselt H, Sutton RS. Weighted importance sampling for off-policy learning with linear function approximation Advances in Neural Information Processing Systems. 4: 3014-3022.  0.331
2014 Sutton RS, Mahmood AR, Precup D, Van Hasselt H. A new Q(λ) with interim forward view and Monte Carlo equivalence 31st International Conference On Machine Learning, Icml 2014. 3: 1973-1988.  0.447
2013 Pilarski PM, Dick TB, Sutton RS. Real-time prediction learning for the simultaneous actuation of multiple prosthetic joints. Ieee ... International Conference On Rehabilitation Robotics : [Proceedings]. 2013: 6650435. PMID 24187253 DOI: 10.1109/ICORR.2013.6650435  0.392
2013 Kehoe EJ, Ludvig EA, Sutton RS. Timing and cue competition in conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Learning & Memory (Cold Spring Harbor, N.Y.). 20: 97-102. PMID 23325726 DOI: 10.1101/Lm.028183.112  0.635
2013 Pilarski PM, Dawson MR, Degris T, Carey J, Chan KM, Hebert JS, Sutton RS. Adaptive artificial limbs: A real-time approach to prediction and anticipation Ieee Robotics and Automation Magazine. 20: 53-64. DOI: 10.1109/MRA.2012.2229948  0.375
2012 Ludvig EA, Sutton RS, Kehoe EJ. Evaluating the TD model of classical conditioning. Learning & Behavior. 40: 305-19. PMID 22927003 DOI: 10.3758/S13420-012-0082-6  0.722
2012 Modayil J, White A, Pilarski PM, Sutton RS. Acquiring a broad range of empirical knowledge in real time by temporal-difference learning Conference Proceedings - Ieee International Conference On Systems, Man and Cybernetics. 1903-1910. DOI: 10.1109/ICSMC.2012.6378016  0.387
2012 Silver D, Sutton RS, Müller M. Temporal-difference search in computer Go Machine Learning. 87: 183-219. DOI: 10.1007/S10994-012-5280-0  0.638
2012 Degris T, Pilarski PM, Sutton RS. Model-Free reinforcement learning with continuous action in practice Proceedings of the American Control Conference. 2177-2182.  0.352
2011 Pilarski PM, Dawson MR, Degris T, Fahimi F, Carey JP, Sutton RS. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning. Ieee ... International Conference On Rehabilitation Robotics : [Proceedings]. 2011: 5975338. PMID 22275543 DOI: 10.1109/ICORR.2011.5975338  0.331
2011 Sutton RS, Modayil J, Degris MDT, Pilarski PM, White A, Precup D. Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction 10th International Conference On Autonomous Agents and Multiagent Systems 2011, Aamas 2011. 2: 713-720.  0.611
2010 Kehoe EJ, Ludvig EA, Sutton RS. Timing in trace conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus): scalar, nonscalar, and adaptive features. Learning & Memory (Cold Spring Harbor, N.Y.). 17: 600-4. PMID 21075900 DOI: 10.1101/Lm.1942210  0.64
2010 Maei HR, Szepesvari C, Bhatnagar S, Sutton RS. Toward off-policy learning control with function approximation Icml 2010 - Proceedings, 27th International Conference On Machine Learning. 719-726.  0.784
2010 Maei HR, Sutton RS. GQ(λ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces Artificial General Intelligence - Proceedings of the Third Conference On Artificial General Intelligence, Agi 2010. 91-96.  0.784
2009 Kehoe EJ, Ludvig EA, Sutton RS. Magnitude and timing of conditioned responses in delay and trace classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 123: 1095-101. PMID 19824776 DOI: 10.1037/A0017112  0.632
2009 Kehoe EJ, Olsen KN, Ludvig EA, Sutton RS. Scalar timing varies with response magnitude in classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 123: 212-7. PMID 19170446 DOI: 10.1037/A0014122  0.646
2009 Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C, Wiewiora E. Fast gradient-descent methods for temporal-difference learning with linear function approximation Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 993-1000. DOI: 10.1145/1553374.1553501  0.792
2009 Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M. Natural actor-critic algorithms Automatica. 45: 2471-2482. DOI: 10.1016/j.automatica.2009.07.008  0.516
2009 Sutton RS, Szepesvári C, Maei HR. A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 1609-1616.  0.777
2009 Ludvig EA, Sutton RS, Verbeek E, Kehoe EJ. A computational model of hippocampal function in trace conditioning Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 993-1000.  0.604
2009 Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C, Wiewiora E. Fast gradient-descent methods for temporal-difference learning with linear function approximation Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 993-1000.  0.804
2009 Maei HR, Szepesvari C, Bhatnagar S, Precup D, Silver D, Sutton RS. Convergent temporal-difference learning with arbitrary smooth function approximation Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 1204-1212.  0.806
2008 Ludvig EA, Sutton RS, Kehoe EJ. Stimulus representation and the timing of reward-prediction errors in models of the dopamine system. Neural Computation. 20: 3034-54. PMID 18624657 DOI: 10.1162/Neco.2008.11-07-654  0.661
2008 Kehoe EJ, Ludvig EA, Dudeney JE, Neufeld J, Sutton RS. Magnitude and timing of nictitating membrane movements during classical conditioning of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 122: 471-6. PMID 18410186 DOI: 10.1037/0735-7044.122.2.471  0.638
2008 Cutumisu M, Szafron D, Bowling M, Sutton RS. Agent learning using action-dependent learning rates in computer role-playing games Proceedings of the 4th Artificial Intelligence and Interactive Digital Entertainment Conference, Aiide 2008. 22-29.  0.362
2008 Silver D, Sutton RS, Müller M. Sample-based learning and search with permanent and transient memories Proceedings of the 25th International Conference On Machine Learning. 968-975.  0.571
2007 Sutton RS, Koop A, Silver D. On the role of tracking in stationary environments Acm International Conference Proceeding Series. 227: 871-878. DOI: 10.1145/1273496.1273606  0.453
2007 Silver D, Sutton R, Müller M. Reinforcement learning of local shape in the game of go Ijcai International Joint Conference On Artificial Intelligence. 1053-1058.  0.357
2006 Geramifard A, Bowling M, Sutton RS. Incremental least-squares temporal difference learning Proceedings of the National Conference On Artificial Intelligence. 1: 356-361.  0.436
2005 Stone P, Sutton RS, Kuhlmann G. Reinforcement learning for RoboCup soccer keepaway Adaptive Behavior. 13: 165-188. DOI: 10.1177/105971230501300301  0.501
2005 Precup D, Sutton RS, Paduraru C, Koop A, Singh S. Off-policy learning with options and recognizers Advances in Neural Information Processing Systems. 1097-1104.  0.618
2005 Rafols EJ, Ring MB, Sutton RS, Tanner B. Using predictive representations to improve generalization in reinforcement learning Ijcai International Joint Conference On Artificial Intelligence. 835-840.  0.358
2002 Stone P, Sutton RS. Keepaway soccer: A machine learning testbed Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2377: 214-223.  0.322
2001 Stone P, Sutton RS, Singh S. Reinforcement learning for 3 vs. 2 keepaway Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019: 249-258.  0.396
2000 Sutton RS, McAllester D, Singh S, Mansour Y. Policy gradient methods for reinforcement learning with function approximation Advances in Neural Information Processing Systems. 1057-1063.  0.389
1999 Sutton RS, Precup D, Singh S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning Artificial Intelligence. 112: 181-211. DOI: 10.1016/S0004-3702(99)00052-1  0.675
1999 Moll R, Barto AG, Perkins TJ, Sutton RS. Learning instance-independent value functions to enhance local search Advances in Neural Information Processing Systems. 1017-1023.  0.746
1999 Sutton RS. Open theoretical questions in reinforcement learning Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1572: 11-17.  0.39
1999 Sutton RS, Singh S, Precup D, Ravindran B. Improved switching among temporally abstract actions Advances in Neural Information Processing Systems. 1066-1072.  0.475
1999 Sutton RS. Reinforcement learning: Past, present and future? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1585: 195-197.  0.394
1998 Sutton R, Barto A. Reinforcement Learning: An Introduction Ieee Transactions On Neural Networks. 9: 1054-1054. DOI: 10.1109/TNN.1998.712192  0.399
1998 Precupl D, Sutton RS, Satinder S. Theoretical results on reinforcement learning with temporally abstract options Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1398: 382-393.  0.411
1998 Precup D, Sutton RS. Multi-time models for temporally abstract planning Advances in Neural Information Processing Systems. 1050-1056.  0.494
1997 Santamaría JC, Ram A, Sutton RS. Experiments with reinforcement learning in problems with continuous state and action spaces Adaptive Behavior. 6: 163-217. DOI: 10.1177/105971239700600201  0.432
1997 Barto AG, Sutton RS. Chapter 19 Reinforcement learning in artificial intelligence Advances in Psychology. 121: 358-386. DOI: 10.1016/S0166-4115(97)80105-7  0.682
1996 Singh SP, Sutton RS. Reinforcement learning with replacing eligibility traces Machine Learning. 22: 123-158. DOI: 10.1007/Bf00114726  0.467
1992 Sutton RS, Barto AG, Williams RJ. Reinforcement Learning is Direct Adaptive Optimal Control Ieee Control Systems. 12: 19-22. DOI: 10.1109/37.126844  0.681
1992 Sutton RS. Introduction: The challenge of reinforcement learning Machine Learning. 8: 225-227. DOI: 10.1007/BF00992695  0.477
1991 Sutton RS. Dyna, an integrated architecture for learning, planning, and reacting Intelligence\/Sigart Bulletin. 2: 160-163. DOI: 10.1145/122344.122377  0.461
1991 Sutton RS. Planning by Incremental Dynamic Programming Machine Learning. 353-357. DOI: 10.1016/B978-1-55860-200-7.50073-8  0.305
1990 Whitehead SD, Sutton RS, Ballard DH. Advances in reinforcement learning and their implications for intelligent control . 1289-1297.  0.372
1988 Sutton RS. Learning to Predict by the Methods of Temporal Differences Machine Learning. 3: 9-44. DOI: 10.1023/A:1022633531479  0.454
1988 Franklin JA, Sutton RS, Anderson CW. Application of connectionist learning methods to manufacturing process monitoring . 709-712.  0.316
1986 Moore JW, Desmond JE, Berthier NE, Blazis DE, Sutton RS, Barto AG. Simulation of the classically conditioned nictitating membrane response by a neuron-like adaptive element: response topography, neuronal firing, and interstimulus intervals. Behavioural Brain Research. 21: 143-54. PMID 3755947 DOI: 10.1016/0166-4328(86)90092-6  0.592
1983 Barto AG, Sutton RS, Anderson CW. Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems Ieee Transactions On Systems, Man and Cybernetics. 834-846. DOI: 10.1109/TSMC.1983.6313077  0.616
1982 Barto AG, Anderson CW, Sutton RS. Synthesis of nonlinear control surfaces by a layered associative search network. Biological Cybernetics. 43: 175-85. PMID 7093360 DOI: 10.1007/BF00319977  0.612
1982 Barto AG, Sutton RS. Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element. Behavioural Brain Research. 4: 221-35. PMID 6277346 DOI: 10.1016/0166-4328(82)90001-8  0.577
1982 Barto AG, Sutton RS, Anderson CW. SPATIAL LEARNING SIMULATION SYSTEMS . 204-206.  0.316
1981 Barto AG, Sutton RS. Landmark learning: an illustration of associative search. Biological Cybernetics. 42: 1-8. PMID 7326277 DOI: 10.1007/BF00335152  0.628
1981 Sutton RS, Barto AG. Toward a modern theory of adaptive networks: expectation and prediction. Psychological Review. 88: 135-70. PMID 7291377 DOI: 10.1037/0033-295X.88.2.135  0.624
1979 Barto AG, Sutton RS, Brouwer PS. Associative search network: A reinforcement learning associative memory Biological Cybernetics. 40: 201-211. DOI: 10.1007/BF00453370  0.587
Show low-probability matches.