Richard S. Sutton - Publications

Affiliations: 
University of Alberta, Edmonton, Alberta, Canada 
Area:
Reinforcement Learning
Website:
http://www.cs.ualberta.ca/~sutton/index.html

86 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. Pavlovian control of intraspinal microstimulation to produce over-ground walking. Journal of Neural Engineering. PMID 32348970 DOI: 10.1088/1741-2552/ab8e8e  1
2018 Travnik JB, Mathewson KW, Sutton RS, Pilarski PM. Reactive Reinforcement Learning in Asynchronous Environments. Frontiers in Robotics and Ai. 5: 79. PMID 33500958 DOI: 10.3389/frobt.2018.00079  0.52
2015 Edwards AL, Dawson MR, Hebert JS, Sherstan C, Sutton RS, Chan KM, Pilarski PM. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching. Prosthetics and Orthotics International. PMID 26423106 DOI: 10.1177/0309364615605373  1
2015 Mahmood AR, Sutton RS. Off-policy learning based on weighted importance sampling with linear computational complexity Uncertainty in Artificial Intelligence - Proceedings of the 31st Conference, Uai 2015. 552-561.  1
2014 Kehoe EJ, Ludvig EA, Sutton RS. Time course of the rabbit's conditioned nictitating membrane movements during acquisition, extinction, and reacquisition. Learning & Memory (Cold Spring Harbor, N.Y.). 21: 585-90. PMID 25320350 DOI: 10.1101/lm.034504.114  1
2014 Modayil J, White A, Sutton RS. Multi-timescale nexting in a reinforcement learning robot Adaptive Behavior. 22: 146-160. DOI: 10.1177/1059712313511648  1
2014 Sutton RS, Mahmood AR, Precup D, Van Hasselt H. A new Q(λ) with interim forward view and Monte Carlo equivalence 31st International Conference On Machine Learning, Icml 2014. 3: 1973-1988.  1
2014 Van Seijen H, Sutton RS. True online TD(λ) 31st International Conference On Machine Learning, Icml 2014. 2: 1048-1056.  1
2014 Mahmood AR, Van Hasselt H, Sutton RS. Weighted importance sampling for off-policy learning with linear function approximation Advances in Neural Information Processing Systems. 4: 3014-3022.  1
2014 Van Hasselt H, Mahmood AR, Sutton RS. Off-policy TD(λ) with a true online equivalence Uncertainty in Artificial Intelligence - Proceedings of the 30th Conference, Uai 2014. 330-339.  1
2014 Yao H, Szepesvári C, Sutton R, Modayil J, Bhatnagar S. Universal option models Advances in Neural Information Processing Systems. 2: 990-998.  1
2013 Pilarski PM, Dick TB, Sutton RS. Real-time prediction learning for the simultaneous actuation of multiple prosthetic joints. Ieee ... International Conference On Rehabilitation Robotics : [Proceedings]. 2013: 6650435. PMID 24187253 DOI: 10.1109/ICORR.2013.6650435  1
2013 Kehoe EJ, Ludvig EA, Sutton RS. Timing and cue competition in conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Learning & Memory (Cold Spring Harbor, N.Y.). 20: 97-102. PMID 23325726 DOI: 10.1101/lm.028183.112  1
2013 Pilarski PM, Dawson MR, Degris T, Carey J, Chan KM, Hebert JS, Sutton RS. Adaptive artificial limbs: A real-time approach to prediction and anticipation Ieee Robotics and Automation Magazine. 20: 53-64. DOI: 10.1109/MRA.2012.2229948  1
2013 Mahmood AR, Sutton RS. Position paper: Representation search through generate and test Proceedings of the 10th Symposium On Abstraction, Reformulation, and Approximation, Sara 2013. 132-136.  1
2013 Mahmood AR, Sutton RS. Representation search through generate and test Aaai Workshop - Technical Report. 16-21.  1
2013 Van Seijen H, Sutton RS. Efficient planning in MDPs by small backups 30th International Conference On Machine Learning, Icml 2013. 1398-1406.  1
2012 Ludvig EA, Sutton RS, Kehoe EJ. Evaluating the TD model of classical conditioning. Learning & Behavior. 40: 305-19. PMID 22927003 DOI: 10.3758/s13420-012-0082-6  1
2012 Modayil J, White A, Pilarski PM, Sutton RS. Acquiring a broad range of empirical knowledge in real time by temporal-difference learning Conference Proceedings - Ieee International Conference On Systems, Man and Cybernetics. 1903-1910. DOI: 10.1109/ICSMC.2012.6378016  1
2012 Mahmood AR, Sutton RS, Degris T, Pilarski PM. Tuning-free step-size adaptation Icassp, Ieee International Conference On Acoustics, Speech and Signal Processing - Proceedings. 2121-2124. DOI: 10.1109/ICASSP.2012.6288330  1
2012 White A, Modayil J, Sutton RS. Scaling life-long off-policy learning 2012 Ieee International Conference On Development and Learning and Epigenetic Robotics, Icdl 2012. DOI: 10.1109/DevLrn.2012.6400860  1
2012 Pilarski PM, Dawson MR, Degris T, Carey JP, Sutton RS. Dynamic switching and real-time machine learning for improved human control of assistive biomedical robots Proceedings of the Ieee Ras and Embs International Conference On Biomedical Robotics and Biomechatronics. 296-302. DOI: 10.1109/BioRob.2012.6290309  1
2012 Silver D, Sutton RS, Müller M. Temporal-difference search in computer Go Machine Learning. 87: 183-219. DOI: 10.1007/s10994-012-5280-0  1
2012 Sutton RS. Beyond reward: The problem of knowledge and data Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7207: 2-6. DOI: 10.1007/978-3-642-31951-8_2  1
2012 Pilarski PM, Sutton RS. Between instruction and reward: Human-prompted switching Aaai Fall Symposium - Technical Report. 46-52.  1
2012 Degris T, Pilarski PM, Sutton RS. Model-Free reinforcement learning with continuous action in practice Proceedings of the American Control Conference. 2177-2182.  1
2012 Degris T, White M, Sutton RS. Off-policy actor-critic Proceedings of the 29th International Conference On Machine Learning, Icml 2012. 1: 457-464.  1
2011 Pilarski PM, Dawson MR, Degris T, Fahimi F, Carey JP, Sutton RS. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning. Ieee ... International Conference On Rehabilitation Robotics : [Proceedings]. 2011: 5975338. PMID 22275543 DOI: 10.1109/ICORR.2011.5975338  1
2011 Sutton RS, Modayil J, Degris MDT, Pilarski PM, White A, Precup D. Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction 10th International Conference On Autonomous Agents and Multiagent Systems 2011, Aamas 2011. 2: 713-720.  1
2010 Kehoe EJ, Ludvig EA, Sutton RS. Timing in trace conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus): scalar, nonscalar, and adaptive features. Learning & Memory (Cold Spring Harbor, N.Y.). 17: 600-4. PMID 21075900 DOI: 10.1101/lm.1942210  1
2010 Maei HR, Szepesvari C, Bhatnagar S, Sutton RS. Toward off-policy learning control with function approximation Icml 2010 - Proceedings, 27th International Conference On Machine Learning. 719-726.  1
2010 Maei HR, Sutton RS. GQ(λ): A general gradient algorithm for temporal-difference prediction learning with eligibility traces Artificial General Intelligence - Proceedings of the Third Conference On Artificial General Intelligence, Agi 2010. 91-96.  1
2009 Kehoe EJ, Ludvig EA, Sutton RS. Magnitude and timing of conditioned responses in delay and trace classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 123: 1095-101. PMID 19824776 DOI: 10.1037/a0017112  1
2009 Kehoe EJ, Olsen KN, Ludvig EA, Sutton RS. Scalar timing varies with response magnitude in classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 123: 212-7. PMID 19170446 DOI: 10.1037/a0014122  1
2009 Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C, Wiewiora E. Fast gradient-descent methods for temporal-difference learning with linear function approximation Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 993-1000. DOI: 10.1145/1553374.1553501  1
2009 Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M. Natural actor-critic algorithms Automatica. 45: 2471-2482. DOI: 10.1016/j.automatica.2009.07.008  1
2009 Sutton RS, Maei HR, Precup D, Bhatnagar S, Silver D, Szepesvári C, Wiewiora E. Fast gradient-descent methods for temporal-difference learning with linear function approximation Proceedings of the 26th International Conference On Machine Learning, Icml 2009. 993-1000.  1
2009 Maei HR, Szepesvari C, Bhatnagar S, Precup D, Silver D, Sutton RS. Convergent temporal-difference learning with arbitrary smooth function approximation Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference. 1204-1212.  1
2009 Sutton RS, Szepesvári C, Maei HR. A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 1609-1616.  1
2009 Bhatnagar S, Sutton RS, Ghavamzadeh M, Lee M. Incremental natural actor-critic algorithms Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference 1
2009 Ludvig EA, Sutton RS, Verbeek E, Kehoe EJ. A computational model of hippocampal function in trace conditioning Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference. 993-1000.  1
2008 Ludvig EA, Sutton RS, Kehoe EJ. Stimulus representation and the timing of reward-prediction errors in models of the dopamine system. Neural Computation. 20: 3034-54. PMID 18624657 DOI: 10.1162/neco.2008.11-07-654  1
2008 Kehoe EJ, Ludvig EA, Dudeney JE, Neufeld J, Sutton RS. Magnitude and timing of nictitating membrane movements during classical conditioning of the rabbit (Oryctolagus cuniculus). Behavioral Neuroscience. 122: 471-6. PMID 18410186 DOI: 10.1037/0735-7044.122.2.471  1
2008 Cutumisu M, Szafron D, Bowling M, Sutton RS. Agent learning using action-dependent learning rates in computer role-playing games Proceedings of the 4th Artificial Intelligence and Interactive Digital Entertainment Conference, Aiide 2008. 22-29.  1
2008 Sutton RS, Szepesvári C, Geramifard A, Bowling M. Dyna-style planning with linear function approximation and prioritized sweeping Proceedings of the 24th Conference On Uncertainty in Artificial Intelligence, Uai 2008. 528-536.  1
2008 Silver D, Sutton RS, Müller M. Sample-based learning and search with permanent and transient memories Proceedings of the 25th International Conference On Machine Learning. 968-975.  1
2007 Sutton RS, Koop A, Silver D. On the role of tracking in stationary environments Acm International Conference Proceeding Series. 227: 871-878. DOI: 10.1145/1273496.1273606  1
2007 Geramifard A, Bowling M, Zinkevich M, Sutton RS. ILSTD: Eligibility traces and convergence analysis Advances in Neural Information Processing Systems. 441-448.  1
2007 Silver D, Sutton R, Müller M. Reinforcement learning of local shape in the game of go Ijcai International Joint Conference On Artificial Intelligence. 1053-1058.  1
2006 Geramifard A, Bowling M, Sutton RS. Incremental least-squares temporal difference learning Proceedings of the National Conference On Artificial Intelligence. 1: 356-361.  1
2005 Stone P, Sutton RS, Kuhlmann G. Reinforcement learning for RoboCup soccer keepaway Adaptive Behavior. 13: 165-188. DOI: 10.1177/105971230501300301  1
2005 Rafols EJ, Ring MB, Sutton RS, Tanner B. Using predictive representations to improve generalization in reinforcement learning Ijcai International Joint Conference On Artificial Intelligence. 835-840.  1
2005 Sutton RS, Rafols EJ, Koop A. Temporal abstraction in temporal-difference networks Advances in Neural Information Processing Systems. 1313-1320.  1
2005 Tanner B, Sutton RS. Temporal-difference networks with history Ijcai International Joint Conference On Artificial Intelligence. 865-870.  1
2005 Precup D, Sutton RS, Paduraru C, Koop A, Singh S. Off-policy learning with options and recognizers Advances in Neural Information Processing Systems. 1097-1104.  1
2005 Tanner B, Sutton RS. TD(λ) networks: Temporal-difference networks with eligibility traces Icml 2005 - Proceedings of the 22nd International Conference On Machine Learning. 889-896.  1
2002 Stone P, Sutton RS. Keepaway soccer: A machine learning testbed Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2377: 214-223.  1
2002 Littman ML, Sutton RS, Singh S. Predictive representations of state Advances in Neural Information Processing Systems 1
2001 Stone P, Sutton RS, Singh S. Reinforcement learning for 3 vs. 2 keepaway Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019: 249-258.  1
2000 Sutton RS, McAllester D, Singh S, Mansour Y. Policy gradient methods for reinforcement learning with function approximation Advances in Neural Information Processing Systems. 1057-1063.  1
1999 Sutton RS, Precup D, Singh S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning Artificial Intelligence. 112: 181-211. DOI: 10.1016/S0004-3702(99)00052-1  1
1999 Sutton RS. Open theoretical questions in reinforcement learning Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1572: 11-17.  1
1999 Sutton RS, Singh S, Precup D, Ravindran B. Improved switching among temporally abstract actions Advances in Neural Information Processing Systems. 1066-1072.  1
1999 Moll R, Barto AG, Perkins TJ, Sutton RS. Learning instance-independent value functions to enhance local search Advances in Neural Information Processing Systems. 1017-1023.  1
1999 Sutton RS. Reinforcement learning: Past, present and future? Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1585: 195-197.  1
1998 Precupl D, Sutton RS, Satinder S. Theoretical results on reinforcement learning with temporally abstract options Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1398: 382-393.  1
1998 Precup D, Sutton RS. Multi-time models for temporally abstract planning Advances in Neural Information Processing Systems. 1050-1056.  1
1997 Barto AG, Sutton RS. Chapter 19 Reinforcement learning in artificial intelligence Advances in Psychology. 121: 358-386. DOI: 10.1016/S0166-4115(97)80105-7  1
1997 Santamaría JC, Ram A, Sutton RS. Experiments with reinforcement learning in problems with continuous state and action spaces Adaptive Behavior. 6: 163-217.  1
1997 Sutton RS. On the significance of markov decision processes Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 1327: 274-282.  1
1996 Singh SP, Sutton RS. Reinforcement learning with replacing eligibility traces Machine Learning. 22: 123-158.  1
1992 Sutton RS, Barto AG, Williams RJ. Reinforcement Learning is Direct Adaptive Optimal Control Ieee Control Systems. 12: 19-22. DOI: 10.1109/37.126844  1
1992 Sutton RS. Introduction: The challenge of reinforcement learning Machine Learning. 8: 225-227. DOI: 10.1007/BF00992695  1
1992 Sutton RS. Adapting bias by gradient descent: an incremental version of delta-bar-delta Proceedings Tenth National Conference On Artificial Intelligence. 171-176.  1
1990 Anderson CW, Franklin JA, Sutton RS. Learning a nonlinear model of a manufacturing process using multilayer connectionist networks . 404-409.  1
1990 Whitehead SD, Sutton RS, Ballard DH. Advances in reinforcement learning and their implications for intelligent control . 1289-1297.  1
1988 Sutton RS. Learning to Predict by the Methods of Temporal Differences Machine Learning. 3: 9-44. DOI: 10.1023/A:1022633531479  1
1988 Franklin JA, Sutton RS, Anderson CW. Application of connectionist learning methods to manufacturing process monitoring . 709-712.  1
1986 Moore JW, Desmond JE, Berthier NE, Blazis DE, Sutton RS, Barto AG. Simulation of the classically conditioned nictitating membrane response by a neuron-like adaptive element: response topography, neuronal firing, and interstimulus intervals. Behavioural Brain Research. 21: 143-54. PMID 3755947 DOI: 10.1016/0166-4328(86)90092-6  1
1983 Barto AG, Sutton RS, Anderson CW. Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problems Ieee Transactions On Systems, Man and Cybernetics. 834-846. DOI: 10.1109/TSMC.1983.6313077  1
1982 Barto AG, Anderson CW, Sutton RS. Synthesis of nonlinear control surfaces by a layered associative search network. Biological Cybernetics. 43: 175-85. PMID 7093360 DOI: 10.1007/BF00319977  1
1982 Barto AG, Sutton RS. Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element. Behavioural Brain Research. 4: 221-35. PMID 6277346 DOI: 10.1016/0166-4328(82)90001-8  1
1982 Barto AG, Sutton RS, Anderson CW. SPATIAL LEARNING SIMULATION SYSTEMS . 204-206.  1
1981 Barto AG, Sutton RS. Landmark learning: an illustration of associative search. Biological Cybernetics. 42: 1-8. PMID 7326277 DOI: 10.1007/BF00335152  1
1981 Sutton RS, Barto AG. Toward a modern theory of adaptive networks: expectation and prediction. Psychological Review. 88: 135-70. PMID 7291377 DOI: 10.1037/0033-295X.88.2.135  1
1979 Barto AG, Sutton RS, Brouwer PS. Associative search network: A reinforcement learning associative memory Biological Cybernetics. 40: 201-211. DOI: 10.1007/BF00453370  1
Show low-probability matches.