Xiaodong Ma - Publications
Affiliations: | 2012-2017 | Center for Biomedical Imaging Research | Tsinghua University |
2019- | Center for Magnetic Resonance Research | University of Minnesota, Twin Cities, Minneapolis, MN | |
2019-2019 | The University of Hong Kong, Hong Kong Island, Hong Kong, Hong Kong |
Area:
dMRI, RF parallel transmission, fMRIYear | Citation | Score | |||
---|---|---|---|---|---|
2024 | Ye X, Ma X, Pan Z, Zhang Z, Guo H, Uğurbil K, Wu X. Denoising complex-valued diffusion MR images using a two-step non-local principal component analysis approach. Biorxiv : the Preprint Server For Biology. PMID 39553996 DOI: 10.1101/2024.10.30.621081 | 0.637 | |||
2024 | Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magnetic Resonance in Medicine. PMID 39481025 DOI: 10.1002/mrm.30346 | 0.607 | |||
2023 | Pan Z, Ma X, Dai E, Auerbach EJ, Guo H, Uğurbil K, Wu X. Reconstruction for 7T high-resolution whole-brain diffusion MRI using two-stage N/2 ghost correction and L1-SPIRiT without single-band reference. Magnetic Resonance in Medicine. PMID 36594439 DOI: 10.1002/mrm.29573 | 0.654 | |||
2022 | Zhu W, Ma X, Zhu XH, Ugurbil K, Chen W, Wu X. Denoise Functional Magnetic Resonance Imaging with Random Matrix Theory Based Principal Component Analysis. Ieee Transactions On Bio-Medical Engineering. PMID 35439125 DOI: 10.1109/TBME.2022.3168592 | 0.627 | |||
2022 | Ma X, Uğurbil K, Wu X. Mitigating transmit-B artifacts by predicting parallel transmission images with deep learning: A feasibility study using high-resolution whole-brain diffusion at 7 Tesla. Magnetic Resonance in Medicine. PMID 35403237 DOI: 10.1002/mrm.29238 | 0.624 | |||
2020 | Ma X, Uğurbil K, Wu X. Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation. Neuroimage. 116852. PMID 32305566 DOI: 10.1016/J.Neuroimage.2020.116852 | 0.67 | |||
Show low-probability matches. |