Moritz Helias - Publications

Affiliations: 
Institute for Neuroscience and Medicine 6 Forschungszentrum Jülich 

69 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Layer M, Senk J, Essink S, van Meegen A, Bos H, Helias M. NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models. Frontiers in Neuroinformatics. 16: 835657. PMID 35712677 DOI: 10.3389/fninf.2022.835657  0.484
2022 Stapmanns J, Kühn T, Dahmen D, Luu T, Honerkamp C, Helias M. Erratum: Self-consistent formulations for stochastic nonlinear neuronal dynamics [Phys. Rev. E 101, 042124 (2020)]. Physical Review. E. 105: 059901. PMID 35706324 DOI: 10.1103/PhysRevE.105.059901  0.344
2022 Dahmen D, Layer M, Deutz L, Dąbrowska PA, Voges N, von Papen M, Brochier T, Riehle A, Diesmann M, Grün S, Helias M. Global organization of neuronal activity only requires unstructured local connectivity. Elife. 11. PMID 35049496 DOI: 10.7554/eLife.68422  0.481
2021 van Meegen A, Kühn T, Helias M. Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions. Physical Review Letters. 127: 158302. PMID 34678014 DOI: 10.1103/PhysRevLett.127.158302  0.333
2021 Stapmanns J, Hahne J, Helias M, Bolten M, Diesmann M, Dahmen D. Event-Based Update of Synapses in Voltage-Based Learning Rules. Frontiers in Neuroinformatics. 15: 609147. PMID 34177505 DOI: 10.3389/fninf.2021.609147  0.311
2020 Gilson M, Dahmen D, Moreno-Bote R, Insabato A, Helias M. The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks. Plos Computational Biology. 16: e1008127. PMID 33044953 DOI: 10.1371/journal.pcbi.1008127  0.51
2020 Jordan J, Helias M, Diesmann M, Kunkel S. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions. Frontiers in Neuroinformatics. 14: 12. PMID 32431602 DOI: 10.3389/Fninf.2020.00012  0.483
2020 Stapmanns J, Kühn T, Dahmen D, Luu T, Honerkamp C, Helias M. Self-consistent formulations for stochastic nonlinear neuronal dynamics. Physical Review. E. 101: 042124. PMID 32422832 DOI: 10.1103/Physreve.101.042124  0.512
2020 Dahmen D, Gilson M, Helias M. Capacity of the covariance perceptron Journal of Physics A. 53: 354002. DOI: 10.1088/1751-8121/Ab82Dd  0.412
2020 Helias M, Dahmen D. Statistical Field Theory for Neural Networks Arxiv: Disordered Systems and Neural Networks. DOI: 10.1007/978-3-030-46444-8  0.327
2019 Dahmen D, Grün S, Diesmann M, Helias M. Second type of criticality in the brain uncovers rich multiple-neuron dynamics. Proceedings of the National Academy of Sciences of the United States of America. PMID 31189590 DOI: 10.1073/Pnas.1818972116  0.564
2018 Kass RE, Amari SI, Arai K, Brown EN, Diekman CO, Diesmann M, Doiron B, Eden UT, Fairhall AL, Fiddyment GM, Fukai T, Grün S, Harrison MT, Helias M, Nakahara H, et al. Computational Neuroscience: Mathematical and Statistical Perspectives. Annual Review of Statistics and Its Application. 5: 183-214. PMID 30976604 DOI: 10.1146/annurev-statistics-041715-033733  0.349
2018 Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. Corrigendum: Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in Neuroinformatics. 12: 34. PMID 30008668 DOI: 10.3389/Fninf.2018.00034  0.503
2018 Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in Neuroinformatics. 12: 2. PMID 29503613 DOI: 10.3389/Fninf.2018.00002  0.461
2018 Schuecker J, Goedeke S, Helias M. Optimal Sequence Memory in Driven Random Networks Physical Review X. 8: 41029. DOI: 10.1103/Physrevx.8.041029  0.326
2017 Krishnan J, Porta Mana P, Helias M, Diesmann M, Di Napoli E. Perfect Detection of Spikes in the Linear Sub-threshold Dynamics of Point Neurons. Frontiers in Neuroinformatics. 11: 75. PMID 29379430 DOI: 10.3389/Fninf.2017.00075  0.585
2017 Rostami V, Porta Mana P, Grün S, Helias M. Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models. Plos Computational Biology. 13: e1005762. PMID 28968396 DOI: 10.1371/Journal.Pcbi.1005762  0.617
2017 Kühn T, Helias M. Locking of correlated neural activity to ongoing oscillations. Plos Computational Biology. 13: e1005534. PMID 28604771 DOI: 10.1371/Journal.Pcbi.1005534  0.539
2017 Hahne J, Dahmen D, Schuecker J, Frommer A, Bolten M, Helias M, Diesmann M. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator. Frontiers in Neuroinformatics. 11: 34. PMID 28596730 DOI: 10.3389/Fninf.2017.00034  0.47
2017 Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome. Plos Computational Biology. 13: e1005179. PMID 28146554 DOI: 10.1371/Journal.Pcbi.1005179  0.479
2016 Bos H, Diesmann M, Helias M. Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit. Plos Computational Biology. 12: e1005132. PMID 27736873 DOI: 10.1371/Journal.Pcbi.1005132  0.495
2016 Torre E, Canova C, Denker M, Gerstein G, Helias M, Grün S. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains. Plos Computational Biology. 12: e1004939. PMID 27420734 DOI: 10.1371/Journal.Pcbi.1004939  0.481
2016 Grytskyy D, Diesmann M, Helias M. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality. Physical Review. E. 93: 062303. PMID 27415276 DOI: 10.1103/Physreve.93.062303  0.425
2016 Dahmen D, Bos H, Helias M. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium Physical Review X. 6: 31024. DOI: 10.1103/Physrevx.6.031024  0.467
2015 Schuecker J, Diesmann M, Helias M. Modulated escape from a metastable state driven by colored noise. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 92: 052119. PMID 26651659 DOI: 10.1103/Physreve.92.052119  0.425
2015 Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Frontiers in Neuroinformatics. 9: 22. PMID 26441628 DOI: 10.3389/Fninf.2015.00022  0.51
2015 van Albada SJ, Helias M, Diesmann M. Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations. Plos Computational Biology. 11: e1004490. PMID 26325661 DOI: 10.1371/Journal.Pcbi.1004490  0.482
2015 Chua Y, Morrison A, Helias M. Modeling the calcium spike as a threshold triggered fixed waveform for synchronous inputs in the fluctuation regime. Frontiers in Computational Neuroscience. 9: 91. PMID 26283954 DOI: 10.3389/Fncom.2015.00091  0.473
2015 Bos H, Schuecker J, Diesmann M, Helias M. Identifying and exploiting the anatomical origin of population rate oscillations in multi-layered spiking networks Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P97  0.492
2015 Grytskyy D, Diesmann M, Helias M. Functional consequences of non-equilibrium dynamics caused by antisymmetric and symmetric learning rules Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P96  0.55
2015 van Albada SJ, Helias M, Diesmann M. Limits to the scalability of cortical network models Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-O1  0.491
2014 Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M, Helias M. Spiking network simulation code for petascale computers. Frontiers in Neuroinformatics. 8: 78. PMID 25346682 DOI: 10.3389/Fninf.2014.00078  0.509
2014 Helias M, Tetzlaff T, Diesmann M. The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. Plos Computational Biology. 10: e1003428. PMID 24453955 DOI: 10.1371/Journal.Pcbi.1003428  0.594
2014 Chua Y, Helias M, Morrison A. Calcium current improves coincidence detection of the LIF model Bmc Neuroscience. 15: 86. DOI: 10.1186/1471-2202-15-S1-P86  0.474
2014 Schuecker J, Diesmann M, Helias M. The transfer function of the LIF model: from white to filtered noise Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P146  0.456
2013 Kriener B, Helias M, Rotter S, Diesmann M, Einevoll GT. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime. Frontiers in Computational Neuroscience. 7: 187. PMID 24501591 DOI: 10.1186/1471-2202-14-S1-P123  0.631
2013 Grytskyy D, Tetzlaff T, Diesmann M, Helias M. A unified view on weakly correlated recurrent networks. Frontiers in Computational Neuroscience. 7: 131. PMID 24151463 DOI: 10.3389/Fncom.2013.00131  0.491
2013 Vlachos A, Helias M, Becker D, Diesmann M, Deller T. NMDA-receptor inhibition increases spine stability of denervated mouse dentate granule cells and accelerates spine density recovery following entorhinal denervation in vitro. Neurobiology of Disease. 59: 267-76. PMID 23932917 DOI: 10.1016/J.Nbd.2013.07.018  0.425
2013 Schultze-Kraft M, Diesmann M, Grün S, Helias M. Noise suppression and surplus synchrony by coincidence detection. Plos Computational Biology. 9: e1002904. PMID 23592953 DOI: 10.1371/Journal.Pcbi.1002904  0.558
2013 Grytskyy D, Tetzlaff T, Diesmann M, Helias M. Noise decouples covariances from interaction strength Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P164  0.472
2013 Kunkel S, Schmidt M, Eppler JM, Plesser HE, Igarashi J, Masumoto G, Fukai T, Ishii S, Morrison A, Diesmann M, Helias M. From laptops to supercomputers: a single highly scalable code base for spiking neuronal network simulations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P163  0.492
2013 Helias M, Tetzlaff T, Diesmann M. Recurrence and external sources differentially shape network correlations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P113  0.527
2013 van Albada SJ, Schrader S, Helias M, Diesmann M. Influence of different types of downscaling on a cortical microcircuit model Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P112  0.574
2013 Helias M, Tetzlaff T, Diesmann M. Echoes in correlated neural systems New Journal of Physics. 15. DOI: 10.1088/1367-2630/15/2/023002  0.584
2012 Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of neural-network activity by inhibitory feedback. Plos Computational Biology. 8: e1002596. PMID 23133368 DOI: 10.1371/Journal.Pcbi.1002596  0.502
2012 Helias M, Kunkel S, Masumoto G, Igarashi J, Eppler JM, Ishii S, Fukai T, Morrison A, Diesmann M. Supercomputers ready for use as discovery machines for neuroscience. Frontiers in Neuroinformatics. 6: 26. PMID 23129998 DOI: 10.3389/Fninf.2012.00026  0.383
2012 Deger M, Helias M, Rotter S, Diesmann M. Spike-timing dependence of structural plasticity explains cooperative synapse formation in the neocortex. Plos Computational Biology. 8: e1002689. PMID 23028287 DOI: 10.1371/Journal.Pcbi.1002689  0.393
2012 Deger M, Helias M, Boucsein C, Rotter S. Statistical properties of superimposed stationary spike trains. Journal of Computational Neuroscience. 32: 443-63. PMID 21964584 DOI: 10.1007/S10827-011-0362-8  0.537
2012 Grytskyy D, Helias M, Tetzlaff T, Diesmann M. Taming the model zoo: a unified view on correlations in recurrent networks Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P147  0.569
2011 Helias M, Deger M, Rotter S, Diesmann M. Finite post synaptic potentials cause a fast neuronal response. Frontiers in Neuroscience. 5: 19. PMID 21427776 DOI: 10.3389/Fnins.2011.00019  0.558
2011 Helias M, Tetzlaff T, Diesmann M. Towards a unified theory of correlations in recurrent neural networks Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P73  0.549
2011 Deger M, Helias M, Boucsein C, Rotter S. Effective neuronal refractoriness dominates the statistics of superimposed spike trains Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P273  0.588
2011 Kunkel S, Helias M, Diesmann M, Morrison A. Fail-safe detection of threshold crossings of linear integrate-and-fire neuron models in time-driven simulations Bmc Neuroscience. 12: 229. DOI: 10.1186/1471-2202-12-S1-P229  0.537
2011 Schultze-Kraft M, Diesmann M, Grün S, Helias M. Correlation transmission of spiking neurons is boosted by synchronous input Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P144  0.571
2010 Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in Neuroinformatics. 4: 113. PMID 21031031 DOI: 10.3389/Fninf.2010.00113  0.511
2010 Deger M, Helias M, Cardanobile S, Atay FM, Rotter S. Nonequilibrium dynamics of stochastic point processes with refractoriness. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 82: 021129. PMID 20866797 DOI: 10.1103/Physreve.82.021129  0.353
2010 Helias M, Deger M, Rotter S, Diesmann M. Instantaneous non-linear processing by pulse-coupled threshold units. Plos Computational Biology. 6. PMID 20856583 DOI: 10.1371/Journal.Pcbi.1000929  0.483
2010 Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg O. Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics. 8: 43-60. PMID 20195795 DOI: 10.1007/S12021-010-9064-Z  0.447
2010 Helias M, Deger M, Diesmann M, Rotter S. Equilibrium and Response Properties of the Integrate-and-Fire Neuron in Discrete Time. Frontiers in Computational Neuroscience. 3: 29. PMID 20130755 DOI: 10.3389/Neuro.10.029.2009  0.571
2010 Helias M, Tetzlaff T, Diesmann M. Neurons hear their echo Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P47  0.554
2010 Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of low-frequency neural activity by inhibitory feedback Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-O11  0.53
2009 Kriener B, Helias M, Aertsen A, Rotter S. Correlations in spiking neuronal networks with distance dependent connections. Journal of Computational Neuroscience. 27: 177-200. PMID 19568923 DOI: 10.1007/S10827-008-0135-1  0.473
2009 Helias M, Deger M, Diesmann M, Rotter S. Finite synaptic potentials cause a non-linear instantaneous response of the integrate-and-fire model Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P225  0.438
2009 Deger M, Cardanobile S, Helias M, Rotter S. The Poisson process with dead time captures important statistical features of neural activity Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P110  0.309
2009 Diesmann M, Helias M, Deger M, Rotter S. The non-linear response of the integrate-and-fire neuron to finite synaptic potentials Neuroscience Research. 65: S78. DOI: 10.1016/J.Neures.2009.09.290  0.476
2008 Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in Neuroinformatics. 2: 12. PMID 19198667 DOI: 10.3389/Neuro.11.012.2008  0.439
2008 Helias M, Rotter S, Gewaltig MO, Diesmann M. Structural plasticity controlled by calcium based correlation detection. helias@bccn.uni-freiburg.de. Frontiers in Computational Neuroscience. 2: 7. PMID 19129936 DOI: 10.3389/Neuro.10.007.2008  0.404
2008 Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P131  0.495
2007 Helias M, Rotter S, Gewaltig M, Diesmann M. A model for correlation detection based on Ca2+concentration in spines Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P192  0.396
Show low-probability matches.