Thomas T. Norton - Publications

Affiliations: 
University of Alabama, Birmingham, Birmingham, AL, United States 
Area:
visual function, experimental myopia

82 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Khanal S, Norton TT, Gawne TJ. Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia. Vision Research. 204: 108161. PMID 36529048 DOI: 10.1016/j.visres.2022.108161  0.344
2021 Norton TT, Khanal S, Gawne TJ. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. Experimental Eye Research. 108525. PMID 33711339 DOI: 10.1016/j.exer.2021.108525  0.382
2020 Gawne TJ, Norton TT. An opponent dual-detector spectral drive model of emmetropization. Vision Research. 173: 7-20. PMID 32445984 DOI: 10.1016/j.visres.2020.03.011  0.38
2019 Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, Norton TT, Roorda A, Carroll J. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Experimental Eye Research. PMID 31158381 DOI: 10.1016/J.Exer.2019.05.023  0.37
2018 El Hamdaoui M, Gann DW, Norton TT, Grytz R. Matching the LenStar optical biometer to A-Scan ultrasonography for use in small animal eyes with application to tree shrews. Experimental Eye Research. PMID 30593786 DOI: 10.1016/j.exer.2018.12.008  0.426
2018 Gawne TJ, Ward AH, Norton TT. Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light. Optometry and Vision Science : Official Publication of the American Academy of Optometry. PMID 30179995 DOI: 10.1097/OPX.0000000000001283  0.389
2018 Ward AH, Norton TT, Huisingh CE, Gawne TJ. The hyperopic effect of narrow-band long-wavelength light in tree shrews increases non-linearly with duration. Vision Research. PMID 29655781 DOI: 10.1016/j.visres.2018.03.006  0.382
2018 He L, Frost MR, Siegwart JT, Norton TT. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear. Experimental Eye Research. PMID 29329973 DOI: 10.1016/j.exer.2018.01.005  0.342
2017 Gawne TJ, Ward AH, Norton TT. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Research. PMID 28801261 DOI: 10.1016/j.visres.2017.07.011  0.333
2017 Ward AH, Siegwart JT, Frost MR, Norton TT. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews. Visual Neuroscience. 34: E003. PMID 28304244 DOI: 10.1017/S0952523816000195  0.345
2016 Gawne TJ, Siegwart JT, Ward AH, Norton TT. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Experimental Eye Research. PMID 27979713 DOI: 10.1016/j.exer.2016.12.004  0.429
2016 Norton TT. What Do Animal Studies Tell Us about the Mechanism of Myopia-Protection by Light? Optometry and Vision Science : Official Publication of the American Academy of Optometry. PMID 27362614 DOI: 10.1097/OPX.0000000000000917  0.343
2016 Ward AH, Siegwart JT, Frost MR, Norton TT. The Effect of Intravitreal Injection of Vehicle Solutions on Form Deprivation Myopia in Tree Shrews. Experimental Eye Research. PMID 26836248 DOI: 10.1016/j.exer.2016.01.015  0.421
2015 Harb E, Hyman L, Gwiazda J, Marsh-Tootle W, Zhang Q, Hou W, Norton TT, Weise K, Dirkes K, Zangwill LM. Choroidal Thickness Profiles in Myopic Eyes of Young Adults in the Correction of Myopia Evaluation Trial Cohort. American Journal of Ophthalmology. 160: 62-71.e2. PMID 25896460 DOI: 10.1016/j.ajo.2015.04.018  0.369
2015 Meadway A, Siegwart J, Wildsoet C, Norton T, Zhang Y. A wide angle low coherence interferometry based eye length optometer Progress in Biomedical Optics and Imaging - Proceedings of Spie. 9312. DOI: 10.1117/12.2082185  0.419
2014 Guo L, Frost MR, Siegwart JT, Norton TT. Scleral gene expression during recovery from myopia compared with expression during myopia development in tree shrew. Molecular Vision. 20: 1643-59. PMID 25540576  0.308
2014 He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid in response to three myopiagenic conditions. Vision Research. 102: 52-63. PMID 25072854 DOI: 10.1016/j.visres.2014.07.005  0.454
2014 He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Experimental Eye Research. 123: 56-71. PMID 24742494 DOI: 10.1016/j.exer.2014.04.005  0.429
2014 Gwiazda J, Deng L, Manny R, Norton TT. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Investigative Ophthalmology & Visual Science. 55: 752-8. PMID 24408976 DOI: 10.1167/Iovs.13-13029  0.338
2013 Mutti DO, Gwiazda J, Norton TT, Smith EL, Schaeffel F, To CH. Myopia--yesterday, today, and tomorrow. Optometry and Vision Science : Official Publication of the American Academy of Optometry. 90: 1161-4. PMID 24152883 DOI: 10.1097/OPX.0000000000000117  0.406
2013 Guo L, Frost MR, He L, Siegwart JT, Norton TT. Gene expression signatures in tree shrew sclera in response to three myopiagenic conditions. Investigative Ophthalmology & Visual Science. 54: 6806-19. PMID 24045991 DOI: 10.1167/iovs.13-12551  0.457
2013 Norton TT, Siegwart JT. Light levels, refractive development, and myopia--a speculative review. Experimental Eye Research. 114: 48-57. PMID 23680160 DOI: 10.1016/j.exer.2013.05.004  0.347
2013 Siegwart JT, Norton TT. Response to interrupted hyperopia after restraint of axial elongation in tree shrews. Optometry and Vision Science : Official Publication of the American Academy of Optometry. 90: 131-9. PMID 23314128 DOI: 10.1097/OPX.0b013e31827cda85  0.512
2012 Frost MR, Norton TT. Alterations in protein expression in tree shrew sclera during development of lens-induced myopia and recovery. Investigative Ophthalmology & Visual Science. 53: 322-36. PMID 22039233 DOI: 10.1167/iovs.11-8354  0.457
2012 Amedo AO, Norton TT. Visual guidance of recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Ophthalmic & Physiological Optics : the Journal of the British College of Ophthalmic Opticians (Optometrists). 32: 89-99. PMID 22035177 DOI: 10.1111/J.1475-1313.2011.00875.X  0.781
2011 Gao H, Frost MR, Siegwart JT, Norton TT. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera. Molecular Vision. 17: 903-19. PMID 21541268  0.321
2011 Tarutta E, Chua WH, Young T, Goldschmidt E, Saw SM, Rose KA, Smith E, Mutti DO, Ashby R, Stone RA, Wildsoet C, Howland HC, Fischer AJ, Stell WK, Reichenbach A, ... ... Norton TT, et al. Myopia: Why Study the Mechanisms of Myopia? Novel Approaches to Risk Factors Signalling Eye Growth- How Could Basic Biology Be Translated into Clinical Insights? Where Are Genetic and Proteomic Approaches Leading? How Does Visual Function Contribute to and Interact with Ametropia? Does Eye Shape Matter? Why Ametropia at All? Optometry and Vision Science : Official Publication of the American Academy of Optometry. PMID 21297512 DOI: 10.1097/Opx.0B013E31820E6A6A  0.389
2011 Siegwart JT, Norton TT. Perspective: how might emmetropization and genetic factors produce myopia in normal eyes? Optometry and Vision Science : Official Publication of the American Academy of Optometry. 88: E365-72. PMID 21258261 DOI: 10.1097/OPX.0b013e31820b053d  0.366
2010 Siegwart JT, Norton TT. Binocular lens treatment in tree shrews: Effect of age and comparison of plus lens wear with recovery from minus lens-induced myopia. Experimental Eye Research. 91: 660-9. PMID 20713041 DOI: 10.1016/j.exer.2010.08.010  0.518
2010 Norton TT, Amedo AO, Siegwart JT. The effect of age on compensation for a negative lens and recovery from lens-induced myopia in tree shrews (Tupaia glis belangeri). Vision Research. 50: 564-76. PMID 20045711 DOI: 10.1016/J.Visres.2009.12.014  0.766
2009 McBrien NA, Young TL, Pang CP, Hammond C, Baird P, Saw S, Morgan IG, Mutti DO, Rose KA, Wallman J, Gentle A, Wildsoet CF, Gwiazda J, Schmid KL, Smith E, ... ... Norton TT, et al. Myopia: Recent Advances in Molecular Studies; Prevalence, Progression and Risk Factors; Emmetropization; Therapies; Optical Links; Peripheral Refraction; Sclera and Ocular Growth; Signalling Cascades; and Animal Models Optometry and Vision Science. 86: 45-66. DOI: 10.1097/01.Opx.0000344146.84135.68  0.335
2007 Frost MR, Norton TT. Differential protein expression in tree shrew sclera during development of lens-induced myopia and recovery. Molecular Vision. 13: 1580-8. PMID 17893659  0.358
2007 Moring AG, Baker JR, Norton TT. Modulation of glycosaminoglycan levels in tree shrew sclera during lens-induced myopia development and recovery. Investigative Ophthalmology & Visual Science. 48: 2947-56. PMID 17591859 DOI: 10.1167/iovs.06-0906  0.462
2006 Norton TT, Amedo AO, Siegwart JT. Darkness causes myopia in visually experienced tree shrews. Investigative Ophthalmology & Visual Science. 47: 4700-7. PMID 17065476 DOI: 10.1167/Iovs.05-1641  0.784
2006 Norton TT, Siegwart JT, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes. Investigative Ophthalmology & Visual Science. 47: 4687-99. PMID 17065475 DOI: 10.1167/Iovs.05-1369  0.778
2006 Rada JA, Shelton S, Norton TT. The sclera and myopia. Experimental Eye Research. 82: 185-200. PMID 16202407 DOI: 10.1016/J.Exer.2005.08.009  0.377
2005 Siegwart JT, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Investigative Ophthalmology & Visual Science. 46: 3484-92. PMID 16186323 DOI: 10.1167/iovs.05-0194  0.335
2004 Gwiazda JE, Hyman L, Norton TT, Hussein ME, Marsh-Tootle W, Manny R, Wang Y, Everett D. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Investigative Ophthalmology & Visual Science. 45: 2143-51. PMID 15223788 DOI: 10.1167/Iovs.03-1306  0.369
2003 Norton TT, Wu WW, Siegwart JT. Refractive state of tree shrew eyes measured with cortical visual evoked potentials. Optometry and Vision Science : Official Publication of the American Academy of Optometry. 80: 623-31. PMID 14502042 DOI: 10.1097/00006324-200309000-00006  0.495
2003 Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D, Leske MC, Manny R, Marsh-Tootle W, Scheiman M. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Investigative Ophthalmology & Visual Science. 44: 1492-500. PMID 12657584 DOI: 10.1167/Iovs.02-0816  0.364
2002 Gwiazda J, Marsh-Tootle WL, Hyman L, Hussein M, Norton TT. Baseline refractive and ocular component measures of children enrolled in the correction of myopia evaluation trial (COMET). Investigative Ophthalmology & Visual Science. 43: 314-21. PMID 11818372  0.308
2001 Hyman L, Gwiazda J, Marsh-Tootle WL, Norton TT, Hussein M. The Correction of Myopia Evaluation Trial (COMET): design and general baseline characteristics. Controlled Clinical Trials. 22: 573-92. PMID 11578789 DOI: 10.1016/S0197-2456(01)00156-8  0.412
1999 Norton TT. Animal Models of Myopia: Learning How Vision Controls the Size of the Eye. Ilar Journal / National Research Council, Institute of Laboratory Animal Resources. 40: 59-77. PMID 11304585 DOI: 10.1093/Ilar.40.2.59  0.387
1999 Shaikh AW, Siegwart JT, Norton TT. Effect of interrupted lens wear on compensation for a minus lens in tree shrews. Optometry and Vision Science : Official Publication of the American Academy of Optometry. 76: 308-15. PMID 10375247 DOI: 10.1097/00006324-199905000-00019  0.497
1999 Siegwart JT, Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Research. 39: 387-407. PMID 10326144 DOI: 10.1016/S0042-6989(98)00150-3  0.46
1998 Siegwart JT, Norton TT. The susceptible period for deprivation-induced myopia in tree shrew. Vision Research. 38: 3505-15. PMID 9893785 DOI: 10.1016/S0042-6989(98)00053-4  0.5
1995 Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia. Vision Research. 35: 1271-81. PMID 7610587 DOI: 10.1016/0042-6989(94)00243-F  0.456
1995 Norton TT, Siegwart JT. Animal models of emmetropization: matching axial length to the focal plane. Journal of the American Optometric Association. 66: 405-14. PMID 7560727  0.368
1995 Holdefer RN, Norton TT. Laminar organization of receptive field properties in the dorsal lateral geniculate nucleus of the tree shrew (Tupaiaglis belangeri). The Journal of Comparative Neurology. 358: 401-13. PMID 7560294 DOI: 10.1002/cne.903580307  0.444
1994 Norton TT. A new focus on myopia. Jama. 271: 1362-3. PMID 8158823 DOI: 10.1001/jama.1994.03510410074036  0.347
1994 Norton TT, Essinger JA, McBrien NA. Lid-suture myopia in tree shrews with retinal ganglion cell blockade. Visual Neuroscience. 11: 143-53. PMID 8011577 DOI: 10.1017/S0952523800011184  0.504
1994 McBrien NA, Norton TT. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew. Experimental Eye Research. 59: 475-86. PMID 7859823 DOI: 10.1006/exer.1994.1133  0.449
1993 Irvin GE, Casagrande VA, Norton TT. Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus. Visual Neuroscience. 10: 363-73. PMID 8485098 DOI: 10.1017/S0952523800003758  0.557
1993 Shih YF, Fitzgerald ME, Norton TT, Gamlin PD, Hodos W, Reiner A. Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia. Current Eye Research. 12: 219-27. PMID 8482110 DOI: 10.3109/02713689308999467  0.467
1992 Norton TT, Godwin DW. Inhibitory GABAergic control of visual signals at the lateral geniculate nucleus. Progress in Brain Research. 90: 193-217. PMID 1631300 DOI: 10.1016/S0079-6123(08)63615-8  0.589
1992 McBrien NA, Norton TT. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri) Vision Research. 32: 843-52. PMID 1604853 DOI: 10.1016/0042-6989(92)90027-G  0.49
1992 Norton TT, McBrien NA. Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri). Vision Research. 32: 833-42. PMID 1604852 DOI: 10.1016/0042-6989(92)90026-F  0.5
1990 Norton TT. Experimental myopia in tree shrews. Ciba Foundation Symposium. 155: 178-94; discussion 1. PMID 2088676  0.417
1989 Norton TT, Holdefer RN, Godwin DW. Effects of bicuculline on receptive field center sensitivity of relay cells in the lateral geniculate nucleus. Brain Research. 488: 348-52. PMID 2743130 DOI: 10.1016/0006-8993(89)90728-2  0.609
1989 Holdefer RN, Norton TT, Godwin DW. Effects of bicuculline on signal detectability in lateral geniculate nucleus relay cells. Brain Research. 488: 341-7. PMID 2743129 DOI: 10.1016/0006-8993(89)90727-0  0.621
1989 Marsh-Tootle WL, Norton TT. Refractive and structural measures of lid-suture myopia in tree shrew. Investigative Ophthalmology & Visual Science. 30: 2245-57. PMID 2676897  0.377
1988 Norton TT, Casagrande VA, Irvin GE, Sesma MA, Petry HM. Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. Journal of Neurophysiology. 59: 1639-56. PMID 3404199 DOI: 10.1152/Jn.1988.59.6.1639  0.569
1988 Wilson JR, Bullier J, Norton TT. Signal-to-noise comparisons for X and Y cells in the retina and lateral geniculate nucleus of the cat. Experimental Brain Research. 70: 399-405. PMID 3384040 DOI: 10.1007/Bf00248364  0.631
1988 Holdefer RN, Norton TT, Mize RR. Laminar organization and ultrastructure of GABA-immunoreactive neurons and processes in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia belangeri). Visual Neuroscience. 1: 189-204. PMID 3154795 DOI: 10.1017/S0952523800001462  0.308
1988 Wong-Riley MT, Norton TT. Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew:normal patterns and the effect of retinal impulse blockage. The Journal of Comparative Neurology. 272: 562-78. PMID 2843584 DOI: 10.1002/cne.902720409  0.355
1987 Bonds AB, Casagrande VA, Norton TT, DeBruyn EJ. Visual resolution and sensitivity in a nocturnal primate (galago) measured with visual evoked potentials. Vision Research. 27: 845-57. PMID 3660648 DOI: 10.1016/0042-6989(87)90001-0  0.564
1986 Irvin GE, Norton TT, Sesma MA, Casagrande VA. W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus). Brain Research. 362: 254-70. PMID 3942875 DOI: 10.1016/0006-8993(86)90450-6  0.592
1986 Kretz R, Rager G, Norton TT. Laminar organization of ON and OFF regions and ocular dominance in the striate cortex of the tree shrew (Tupaia belangeri). The Journal of Comparative Neurology. 251: 135-45. PMID 3760256 DOI: 10.1002/cne.902510110  0.379
1984 Sesma MA, Irvin GE, Kuyk TK, Norton TT, Casagrande VA. Effects of monocular deprivation on the lateral geniculate nucleus in a primate. Proceedings of the National Academy of Sciences of the United States of America. 81: 2255-9. PMID 6585797 DOI: 10.1073/Pnas.81.7.2255  0.602
1982 Norton TT, Casagrande VA. Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). Journal of Neurophysiology. 47: 715-41. PMID 6279794 DOI: 10.1152/Jn.1982.47.4.715  0.546
1980 Humphrey AL, Skeen LC, Norton TT. Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping. The Journal of Comparative Neurology. 192: 549-66. PMID 7419744 DOI: 10.1002/cne.901920312  0.303
1979 Bullier J, Norton TT. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. Journal of Neurophysiology. 42: 274-91. PMID 219159 DOI: 10.1152/Jn.1979.42.1.274  0.643
1979 Bullier J, Norton TT. X and Y relay cells in cat lateral geniculate nucleus: quantitative analysis of receptive-field properties and classification. Journal of Neurophysiology. 42: 244-73. PMID 219158 DOI: 10.1152/Jn.1979.42.1.244  0.63
1979 Albano JE, Norton TT, Hall WC. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Research. 173: 1-11. PMID 90538 DOI: 10.1016/0006-8993(79)91090-4  0.312
1978 Albano JE, Humphrey AL, Norton TT. Laminar organization of receptive-field properties in tree shrew superior colliculus. Journal of Neurophysiology. 41: 1140-64. PMID 702190 DOI: 10.1152/Jn.1978.41.5.1140  0.313
1977 Norton TT, Casagrande VA, Sherman SM. Loss of Y-cells in the lateral geniculate nucleus of monocularly deprived tree shrews. Science (New York, N.Y.). 197: 784-6. PMID 887922 DOI: 10.1126/Science.887922  0.675
1977 Sherman SM, Norton TT, Casagrande VA. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Research. 124: 154-7. PMID 843938 DOI: 10.1016/0006-8993(77)90872-1  0.593
1977 Bullier JH, Norton TT. Receptive-field properties of X-, Y- and intermediate cells in the cat lateral geniculate nucleus. Brain Research. 121: 151-6. PMID 832150 DOI: 10.1016/0006-8993(77)90444-9  0.631
1977 Humphrey AL, Albano JE, Norton TT. Organization of ocular dominance in tree shrew striate cortex. Brain Research. 134: 225-36. PMID 407978 DOI: 10.1016/0006-8993(77)91069-1  0.434
1975 Sherman SM, Norton TT, Casagrande VA. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Research. 93: 152-7. PMID 806329 DOI: 10.1016/0006-8993(75)90294-2  0.609
1974 Norton TT. Receptive-field properties of superior colliculus cells and development of visual behavior in kittens. Journal of Neurophysiology. 37: 674-90. PMID 4837772 DOI: 10.1152/Jn.1974.37.4.674  0.344
1967 Galambos R, Norton TT, Frommer GP. Optic tract lesions sparing pattern vision in cats. Experimental Neurology. 18: 8-25. PMID 6022832 DOI: 10.1016/0014-4886(67)90084-2  0.318
Show low-probability matches.