Charles W. Carter, Ph.D - Publications

Affiliations: 
Biochemistry and Biophysics University of North Carolina, Chapel Hill, Chapel Hill, NC 

80 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Hobson JJ, Li Z, Hu H, Carter CW. A Leucyl-tRNA Synthetase Urzyme: Authenticity of tRNA Synthetase Catalytic Activities and Promiscuous Phosphorylation of Leucyl-5'AMP. International Journal of Molecular Sciences. 23. PMID 35457045 DOI: 10.3390/ijms23084229  0.311
2019 Carter CW, Wills PR. Class I and II Aminoacyl-tRNA Synthetase tRNA Groove Discrimination Created the First Synthetase-tRNA Cognate Pairs and Was Therefore Essential to the Origin of Genetic Coding. Iubmb Life. PMID 31190358 DOI: 10.1002/Iub.2094  0.378
2019 Carter CW, Wills PR. Experimental Solutions to Problems Defining the Origin of Codon-Directed Protein Synthesis: Running Head: Whence the Genetic Code? Bio Systems. 103979. PMID 31176803 DOI: 10.1016/J.Biosystems.2019.103979  0.381
2019 Li Z, Carter C. Aminoacyl-tRNA synthetases may have evolved from molten globular precursors Acta Crystallographica Section a Foundations and Advances. 75: a98-a98. DOI: 10.1107/S010876731909901X  0.318
2018 Carter CW, Wills PR. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Research. PMID 30016476 DOI: 10.1093/Nar/Gky600  0.331
2017 Carter CW, Wills PR. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding. Molecular Biology and Evolution. PMID 29077934 DOI: 10.1093/Molbev/Msx265  0.36
2017 Carter CW. Coding of Class I and II Aminoacyl-tRNA Synthetases. Advances in Experimental Medicine and Biology. PMID 28828732 DOI: 10.1007/5584_2017_93  0.374
2017 Chandrasekaran SN, Carter CW. Augmenting the anisotropic network model with torsional potentials improves PATH performance, enabling detailed comparison with experimental rate data. Structural Dynamics (Melville, N.Y.). 4: 032103. PMID 28289692 DOI: 10.1063/1.4976142  0.308
2017 Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. Structural Dynamics (Melville, N.Y.). 4: 032101. PMID 28191480 DOI: 10.1063/1.4974218  0.352
2016 Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement Without Ordered Ground-State Tertiary Structures. Acs Chemical Biology. PMID 27008438 DOI: 10.1021/Acschembio.5B01011  0.419
2015 Carter CW, Wolfenden R. tRNA Acceptor-stem and anticodon bases embed separate features of amino acid chemistry. Rna Biology. 0. PMID 26595350 DOI: 10.1080/15476286.2015.1112488  0.338
2015 Williams TL, Yin WY, Carter CW. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin is Mechanism-Based. The Journal of Biological Chemistry. PMID 26555258 DOI: 10.1074/Jbc.M115.690321  0.388
2015 Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L, Weinreb V, Collier M, Chandrasekaran SN, Ambroggio X, Kuhlman B, Carter CW. Functional Class I and II Amino Acid Activating Enzymes Can Be Coded by Opposite Strands of the Same Gene. The Journal of Biological Chemistry. PMID 26088142 DOI: 10.1074/Jbc.M115.642876  0.347
2015 Carter CW, Wolfenden R. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proceedings of the National Academy of Sciences of the United States of America. 112: 7489-94. PMID 26034281 DOI: 10.1073/Pnas.1507569112  0.339
2015 Wolfenden R, Lewis CA, Yuan Y, Carter CW. Temperature dependence of amino acid hydrophobicities. Proceedings of the National Academy of Sciences of the United States of America. 112: 7484-8. PMID 26034278 DOI: 10.1073/Pnas.1507565112  0.326
2015 Carter CW. What RNA World? Why a Peptide/RNA Partnership Merits Renewed Experimental Attention. Life (Basel, Switzerland). 5: 294-320. PMID 25625599 DOI: 10.3390/Life5010294  0.342
2014 Carter CW. Urzymology: experimental access to a key transition in the appearance of enzymes. The Journal of Biological Chemistry. 289: 30213-20. PMID 25210034 DOI: 10.1074/Jbc.R114.567495  0.405
2014 Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Chandrasekharan SN. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biology Direct. 9: 11. PMID 24927791 DOI: 10.1186/1745-6150-9-11  0.415
2014 Weinreb V, Li L, Chandrasekaran SN, Koehl P, Delarue M, Carter CW. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif. The Journal of Biological Chemistry. 289: 4367-76. PMID 24394410 DOI: 10.1074/Jbc.M113.538660  0.381
2014 Jimenez M, Williams T, González-Rivera AK, Li L, Erdogan O, Carter CW. Did Class 1 and Class 2 Aminoacyl Trna Synthetases Descend from Genetically Complimentary, Catalytically Active ATP-Binding Motifs? Biophysical Journal. 106: 675a. DOI: 10.1016/J.Bpj.2013.11.3740  0.372
2013 Li L, Carter CW. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. The Journal of Biological Chemistry. 288: 34736-45. PMID 24142809 DOI: 10.1074/Jbc.M113.510958  0.413
2013 Li L, Francklyn C, Carter CW. Aminoacylating urzymes challenge the RNA world hypothesis. The Journal of Biological Chemistry. 288: 26856-63. PMID 23867455 DOI: 10.1074/Jbc.M113.496125  0.383
2013 Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Molecular Biology and Evolution. 30: 1588-604. PMID 23576570 DOI: 10.1093/Molbev/Mst070  0.339
2013 Carter CW, Li L, Chandrasekaran SN, Rivera KG, Collier ML. 14 What RNA world ?? Ancestral polypeptides likely participated in the origins of translation Journal of Biomolecular Structure & Dynamics. 31: 8-8. DOI: 10.1080/07391102.2013.786322  0.354
2012 Weinreb V, Li L, Carter CW. A master switch couples Mg²⁺-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA Synthetase. Structure (London, England : 1993). 20: 128-38. PMID 22244762 DOI: 10.1016/J.Str.2011.10.020  0.328
2011 Li L, Weinreb V, Francklyn C, Carter CW. Histidyl-tRNA synthetase urzymes: Class I and II aminoacyl tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. The Journal of Biological Chemistry. 286: 10387-95. PMID 21270472 DOI: 10.1074/Jbc.M110.198929  0.408
2011 Carter CW, Weinreb V, Li L, Kuhlman B. Conditional Mg2+-Assisted Catalysis: A Master Switching Motif Responsible for Differential Stability Suggests a General Transducing Mechanism Biophysical Journal. 100: 536a. DOI: 10.1016/J.Bpj.2010.12.3128  0.346
2010 Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. The Journal of Biological Chemistry. 285: 38590-601. PMID 20864539 DOI: 10.1074/Jbc.M110.136911  0.718
2010 Cammer S, Carter CW. Six Rossmannoid folds, including the Class I aminoacyl-tRNA synthetases, share a partial core with the anti-codon-binding domain of a Class II aminoacyl-tRNA synthetase. Bioinformatics (Oxford, England). 26: 709-14. PMID 20130031 DOI: 10.1093/Bioinformatics/Btq039  0.35
2009 Rodin AS, Rodin SN, Carter CW. On primordial sense-antisense coding. Journal of Molecular Evolution. 69: 555-67. PMID 19956936 DOI: 10.1007/S00239-009-9288-4  0.32
2009 Weinreb V, Li L, Campbell CL, Kaguni LS, Carter CW. Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Structure (London, England : 1993). 17: 952-64. PMID 19604475 DOI: 10.1016/J.Str.2009.05.007  0.307
2009 Laowanapiban P, Kapustina M, Vonrhein C, Delarue M, Koehl P, Carter CW. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Proceedings of the National Academy of Sciences of the United States of America. 106: 1790-5. PMID 19174517 DOI: 10.1073/Pnas.0812752106  0.348
2008 Weinreb V, Carter CW. Mg2+-free Bacillus stearothermophilus tryptophanyl-tRNA synthetase retains a major fraction of the overall rate enhancement for tryptophan activation. Journal of the American Chemical Society. 130: 1488-94. PMID 18173270 DOI: 10.1021/Ja076557X  0.326
2007 Kapustina M, Weinreb V, Li L, Kuhlman B, Carter CW. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase. Structure (London, England : 1993). 15: 1272-84. PMID 17937916 DOI: 10.1016/J.Str.2007.08.010  0.347
2007 Retailleau P, Weinreb V, Hu M, Carter CW. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. Journal of Molecular Biology. 369: 108-28. PMID 17428498 DOI: 10.1016/J.Jmb.2007.01.091  0.408
2007 Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Molecular Cell. 25: 851-62. PMID 17386262 DOI: 10.1016/J.Molcel.2007.02.010  0.705
2007 Carter CW, Kapustina M, Pham Y, Li L, Weinreb V. Catalytic Use of the Allosteric Constant by B. stearothermophilus TrpRS The Faseb Journal. 21. DOI: 10.1096/Fasebj.21.5.A646-B  0.651
2006 Kapustina M, Carter CW. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Journal of Molecular Biology. 362: 1159-80. PMID 16949606 DOI: 10.1016/J.Jmb.2006.06.078  0.371
2005 Roach J, Sharma S, Kapustina M, Carter CW. Structure alignment via Delaunay tetrahedralization. Proteins. 60: 66-81. PMID 15856481 DOI: 10.1002/Prot.20479  0.371
2003 Tropsha A, Carter CW, Cammer S, Vaisman II. Simplicial neighborhood analysis of protein packing (SNAPP): a computational geometry approach to studying proteins. Methods in Enzymology. 374: 509-44. PMID 14696387 DOI: 10.1016/S0076-6879(03)74022-1  0.315
2003 Retailleau P, Huang X, Yin Y, Hu M, Weinreb V, Vachette P, Vonrhein C, Bricogne G, Roversi P, Ilyin V, Carter CW. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Journal of Molecular Biology. 325: 39-63. PMID 12473451 DOI: 10.1016/S0022-2836(02)01156-7  0.397
2002 Carter CW, Duax WL. Did tRNA synthetase classes arise on opposite strands of the same gene? Molecular Cell. 10: 705-8. PMID 12419215 DOI: 10.1016/S1097-2765(02)00688-3  0.309
2001 Retailleau P, Yin Y, Hu M, Roach J, Bricogne G, Vonrhein C, Roversi P, Blanc E, Sweet RM, Carter CW. High-resolution experimental phases for tryptophanyl-tRNA synthetase (TrpRS) complexed with tryptophanyl-5'AMP. Acta Crystallographica. Section D, Biological Crystallography. 57: 1595-608. PMID 11679724 DOI: 10.1107/S090744490101215X  0.341
2001 Carter CW, LeFebvre BC, Cammer SA, Tropsha A, Edgell MH. Four-body potentials reveal protein-specific correlations to stability changes caused by hydrophobic core mutations. Journal of Molecular Biology. 311: 625-38. PMID 11518520 DOI: 10.1006/Jmbi.2001.4906  0.319
2001 Deerfield DW, Carter CW, Pedersen LG. Models for protein-zinc ion binding sites. II. The catalytic sites International Journal of Quantum Chemistry. 83: 150-165. DOI: 10.1002/Qua.1207  0.524
2000 Ilyin VA, Temple B, Hu M, Li G, Yin Y, Vachette P, Carter CW. 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site. Protein Science : a Publication of the Protein Society. 9: 218-31. PMID 10716174 DOI: 10.1110/Ps.9.2.218  0.404
1999 Lahr SJ, Broadwater A, Carter CW, Collier ML, Hensley L, Waldner JC, Pielak GJ, Edgell MH. Patterned library analysis: a method for the quantitative assessment of hypotheses concerning the determinants of protein structure. Proceedings of the National Academy of Sciences of the United States of America. 96: 14860-5. PMID 10611303 DOI: 10.1073/Pnas.96.26.14860  0.374
1999 Carlow DC, Carter CW, Mejlhede N, Neuhard J, Wolfenden R. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure. Biochemistry. 38: 12258-65. PMID 10493793 DOI: 10.1021/Bi990819T  0.393
1999 Scott J, Navaratnam N, Carter C. Molecular Modelling Of The Biosynthesis Of The Rna-Editing Enzyme Apobec-1, Responsible For Generating The Alternative Forms Of Apolipoprotein B Experimental Physiology. 84: 791-800. DOI: 10.1111/J.1469-445X.1999.01805.X  0.387
1998 Scott J, Navaratnam N, Carter C. Molecular modelling and the biosynthesis of apolipoprotein B containing lipoproteins. Atherosclerosis. 141: S17-24. PMID 9888637 DOI: 10.1016/S0021-9150(98)00213-5  0.389
1998 Kakuta Y, Pedersen LC, Chae K, Song WC, Leblanc D, London R, Carter CW, Negishi M. Mouse steroid sulfotransferases: substrate specificity and preliminary X-ray crystallographic analysis. Biochemical Pharmacology. 55: 313-7. PMID 9484797 DOI: 10.1016/S0006-2952(97)00465-6  0.328
1998 Navaratnam N, Fujino T, Bayliss J, Jarmuz A, How A, Richardson N, Somasekaram A, Bhattacharya S, Carter C, Scott J. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. Journal of Molecular Biology. 275: 695-714. PMID 9466941 DOI: 10.1006/Jmbi.1997.1506  0.343
1998 Lewis JP, Carter CW, Hermans J, Pan W, Lee TS, Yang W. Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation Journal of the American Chemical Society. 120: 5407-5410. DOI: 10.1021/Ja973522W  0.338
1997 Xue H, Xue Y, Doublié S, Carter CW. Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire. 75: 709-15. PMID 9599659 DOI: 10.1139/O97-054  0.651
1997 Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC. Crystal structure of estrogen sulphotransferase. Nature Structural Biology. 4: 904-8. PMID 9360604 DOI: 10.1038/Nsb1197-904  0.525
1997 Xiang S, Short SA, Wolfenden R, Carter CW. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization. Biochemistry. 36: 4768-74. PMID 9125497 DOI: 10.1021/Bi963091E  0.332
1996 Hogue CW, Doublié S, Xue H, Wong JT, Carter CW, Szabo AG. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. Journal of Molecular Biology. 260: 446-66. PMID 8757806 DOI: 10.1006/Jmbi.1996.0413  0.372
1996 Xiang S, Short SA, Wolfenden R, Carter CW. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis. Biochemistry. 35: 1335-41. PMID 8634261 DOI: 10.1021/Bi9525583  0.352
1996 Sever S, Rogers K, Rogers MJ, Carter C, Söll D. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Biochemistry. 35: 32-40. PMID 8555191 DOI: 10.1021/Bi952103D  0.418
1995 Doublié S, Bricogne G, Gilmore C, Carter CW. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure (London, England : 1993). 3: 17-31. PMID 7743129 DOI: 10.1016/S0969-2126(01)00132-0  0.681
1995 Xiang S, Short SA, Wolfenden R, Carter CW. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase. Biochemistry. 34: 4516-23. PMID 7718553 DOI: 10.1021/Bi00014A003  0.324
1995 Carter CW. The nucleoside deaminases for cytidine and adenosine: structure, transition state stabilization, mechanism, and evolution. Biochimie. 77: 92-8. PMID 7599282 DOI: 10.1016/0300-9084(96)88110-7  0.394
1994 Carter CW, Yin Y. Quantitative analysis in the characterization and optimization of protein crystal growth. Acta Crystallographica. Section D, Biological Crystallography. 50: 572-90. PMID 15299421 DOI: 10.1107/S0907444994001228  0.32
1994 Betts L, Xiang S, Short SA, Wolfenden R, Carter CW. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex. Journal of Molecular Biology. 235: 635-56. PMID 8289286 DOI: 10.1006/Jmbi.1994.1018  0.408
1994 Carter CW, Doublié S, Coleman DE. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. Journal of Molecular Biology. 238: 346-65. PMID 8176729 DOI: 10.1006/Jmbi.1994.1297  0.643
1994 Doublié S, Xiang S, Gilmore CJ, Bricogne G, Carter CW. Overcoming non-isomorphism by phase permutation and likelihood scoring: solution of the TrpRS crystal structure. Acta Crystallographica. Section a, Foundations of Crystallography. 50: 164-82. PMID 8166950 DOI: 10.1107/S0108767393010037  0.614
1993 Xiang S, Carter CW, Bricogne G, Gilmore CJ. Entropy maximization constrained by solvent flatness: a new method for macromolecular phase extension and map improvement. Acta Crystallographica. Section D, Biological Crystallography. 49: 193-212. PMID 15299561 DOI: 10.1107/S0907444992008540  0.306
1991 Bell JB, Jones ME, Carter CW. Crystallization of yeast orotidine 5'-monophosphate decarboxylase complexed with 1-(5'-phospho-beta-D-ribofuranosyl) barbituric acid. Proteins. 9: 143-51. PMID 2008434 DOI: 10.1002/Prot.340090208  0.305
1991 Smith FR, Lattman EE, Carter CW. The mutation beta 99 Asp-Tyr stabilizes Y--a new, composite quaternary state of human hemoglobin. Proteins. 10: 81-91. PMID 1896430 DOI: 10.1002/Prot.340100202  0.319
1990 Carter CW, Crumley KV, Coleman DE, Hage F, Bricogne G. Direct phase determination for the molecular envelope of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus by X-ray contrast variation. Acta Crystallographica. Section a, Foundations of Crystallography. 46: 57-68. PMID 2310535 DOI: 10.1107/S0108767389009682  0.383
1988 Carter CW. Cloning heterologous genes into E. Coli for enzyme production and crystal growth: Problems of expression and microheterogeneity Journal of Crystal Growth. 90: 168-179. DOI: 10.1016/0022-0248(88)90312-0  0.355
1988 Carter CW, Baldwin ET, Frick L. Statistical design of experiments for protein crystal growth and the use of a precrystallization assay Journal of Crystal Growth. 90: 60-73. DOI: 10.1016/0022-0248(88)90299-0  0.317
1984 Coleman DE, Carter CW. Crystals of Bacillus stearothermophilus tryptophanyl-tRNA synthetase containing enzymatically formed acyl transfer product tryptophanyl-ATP, an active site maker for the 3' CCA terminus of tryptophanyl-tRNATrp. Biochemistry. 23: 381-5. PMID 6559601 DOI: 10.1021/Bi00297A030  0.384
1982 Carter CW, Green DC. Use of chromatofocusing in the purification of tryptophanyl-tRNA synthetase from Bacillus stearothermophilus. Analytical Biochemistry. 124: 327-32. PMID 7149233 DOI: 10.1016/0003-2697(82)90047-1  0.313
1975 Freer ST, Alden RA, Carter CW, Kraut J. Crystallographic structure refinement of Chromatium high potential iron protein at two Angstroms resolution. The Journal of Biological Chemistry. 250: 46-54. PMID 1141211  0.501
1974 Carter CW, Kraut J, Freer ST, Nguyen-Huu-Xuong, Alden RA, Bartsch RG. Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. The Journal of Biological Chemistry. 249: 4212-25. PMID 4855287 DOI: 10.2210/Pdb1Hip/Pdb  0.579
1974 Carter CW, Kraut J. A proposed model for interaction of polypeptides with RNA. Proceedings of the National Academy of Sciences of the United States of America. 71: 283-7. PMID 4521801 DOI: 10.1073/Pnas.71.2.283  0.559
1974 Carter CW, Kraut J, Freer ST, Alden RA. Comparison of oxidation-reduction site geometries in oxidized and reduced Chromatium high potential iron protein and oxidized Peptococcus aerogenes ferredoxin. The Journal of Biological Chemistry. 249: 6339-46. PMID 4417854  0.436
1972 Carter CW, Kraut J, Freer ST, Alden RA, Sieker LC, Adman E, Jensen LH. A comparison of Fe 4 S 4 clusters in high-potential iron protein and in ferredoxin. Proceedings of the National Academy of Sciences of the United States of America. 69: 3526-9. PMID 4509310 DOI: 10.1073/Pnas.69.12.3526  0.519
1972 Carter CW, Freer ST, Xuong NH, Alden RA, Kraut J. Structure of the iron-sulfur cluster in the Chromatius iron protein at 2.25 Angstrom resolution. Cold Spring Harbor Symposia On Quantitative Biology. 36: 381-5. PMID 4508152 DOI: 10.1101/Sqb.1972.036.01.049  0.5
Show low-probability matches.