2015 — 2018 |
Mehrizi-Sani, Ali Van Dongen, Hans (co-PI) [⬀] Hahn, Adam Roy, Sandip [⬀] |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Cps: Ttp Option: Synergy: Collaborative Research: Threat-Assessment Tools For Management-Coupled Cyber- and Physical- Infrastructure @ Washington State University
Strategic decision-making for physical-world infrastructures is rapidly transitioning toward a pervasively cyber-enabled paradigm, in which human stakeholders and automation leverage the cyber-infrastructure at large (including on-line data sources, cloud computing, and handheld devices). This changing paradigm is leading to tight coupling of the cyber- infrastructure with multiple physical- world infrastructures, including air transportation and electric power systems. These management-coupled cyber- and physical- infrastructures (MCCPIs) are subject to complex threats from natural and sentient adversaries, which can enact complex propagative impacts across networked physical-, cyber-, and human elements.
We propose here to develop a modeling framework and tool suite for threat assessment for MCCPIs. The proposed modeling framework for MCCPIs has three aspects: 1) a tractable moment-linear modeling paradigm for the hybrid, stochastic, and multi-layer dynamics of MCCPIs; 2) models for sentient and natural adversaries, that capture their measurement and actuation capabilities in the cyber- and physical- worlds, intelligence, and trust-level; and 3) formal definitions for information security and vulnerability. The attendant tool suite will provide situational awareness of the propagative impacts of threats. Specifically, three functionalities termed Target, Feature, and Defend will be developed, which exploit topological characteristics of an MCCPI to evaluate and mitigate threat impacts. We will then pursue analyses that tie special infrastructure-network features to security/vulnerability. As a central case study, the framework and tools will be used for threat assessment and risk analysis of strategic air traffic management. Three canonical types of threats will be addressed: environmental-to-physical threats, cyber-physical co-threats, and human-in-the-loop threats. This case study will include development and deployment of software decision aids for managing man-made disturbances to the air traffic system.
|
0.931 |
2018 — 2023 |
Whitney, Paul (co-PI) [⬀] Bose, Anjan (co-PI) [⬀] Hahn, Adam Lotfifard, Saeed (co-PI) [⬀] Srivastava, Anurag |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Fw-Htf: Collaborative Research: Augmenting and Advancing Cognitive Performance of Control Room Operators For Power Grid Resiliency @ Washington State University
The Future of Work at the Human-Technology Frontier (FW-HTF) is one of 10 new Big Ideas for Future Investment announced by the National Science Foundation. The FW-HTF cross-directorate program aims to respond to the challenges and opportunities of the changing landscape of jobs and work by supporting convergent research. This award fulfills part of that aim. Effective decision making by power grid operators in extreme events (e.g., Hurricane Maria in Puerto Rico, the Ukraine cyber attack) depends on two factors: operator knowledge acquired through training and experience, and appropriate decision support tools. Decision making in electric grid operation during extreme adverse events directly impacts the life of citizens. This project will augment the cognitive performance of human operators with new, human-focused decision support tools and better, data-driven training for managing the grid especially under highly disruptive conditions. The development of new generation of tools for online knowledge fusion, event detection, cyber-physical-human analysis in operational environment can be applied during extreme events and provide energy to critical facilities like hospitals, city halls and essential infrastructure to keep citizens safe and avoid economic loss for the Nation. Higher performance of operators will improve worker quality of life and will enhance the economic and social well-being of the country. The project's training objectives will leverage existing educational efforts and outreach activities and we will publicize the multidisciplinary outcomes through multiple venues.
The proposed project will integrate principles from cognitive neuroscience, artificial intelligence, machine learning, data science, cybersecurity, and power engineering to augment power grid operators for better performance. Two key parameters influencing human performance from the dynamic attentional control (DAC) framework are working memory (WM) capacity, the ability to maintain information in the focus of attention, and cognitive flexibility (CF), the ability to use feedback to redirect decision making given fast changing system scenarios. The project will achieve its goals through analyzing WM and CF and performance of power grid operators during extreme events; augmenting cognitive performance through advanced machine learning based decision support tools and adaptive human-machine system; and developing theory-driven training simulators for advancing cognitive performance of human operators for enhanced grid resilience. A new set of algorithms have been proposed for data-driven event detection, anomaly flag processing, root cause analysis and decision support using Tree Augmented naive Bayesian Net (TAN) structure, Minimum Weighted Spanning Tree (MWST) using the Mutual Information (MI) metric, and unsupervised learning improved for online learning and decision making. Additionally, visualization tools have been proposed using cognitive factor analysis and human error analysis. We propose a training process driven by cognitive and physiometric analysis and inspired by our experience in operators training in multiple domain: the power grid, aircraft and spacecraft flight simulators. A systematic approach for human operator decision making is proposed using quantifiable human and engineering analysis indices for power grid resiliency.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
|
0.931 |
2020 — 2022 |
Bakken, David (co-PI) [⬀] Srivastava, Anurag Wu, Yinghui Hahn, Adam |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Cps: Dfg Joint: Medium: Collaborative Research: Data-Driven Secure Holonic Control and Optimization For the Networked Cps (Adaption) @ Washington State University
The proposed decentralized/distributed control and optimization for the critical cyber-physical networked infrastructures (CPNI) will improve the robustness, security and resiliency of the electric distribution grid, which directly impacts the life of citizens and national economy. The proposed control and optimization architectures are flexible, adapt to changing operating scenarios, respond quickly and accurately, provide better scalability and robustness, and safely operate the system even when pushed towards the edges by leveraging massive sensor data, distributed computation, and edge computing. The algorithms and platform will be released open source and royalty-free and the project team will work with industry members and researchers for wider usage of the developed algorithms for other CPNI. Developed artifacts as part of the proposed work will be integrated in existing undergraduate and graduate related courses. Undergraduate students will be engaged in research through supplements and underrepresented and pre-engineering students will be engaged through existing outreach activities at home institutions including Imagine U program and 4-H Teens summer camp programs and the Pacific Northwest Louis Stokes Alliance for Minority Participations. Additionally, project team plans to organize a workshop in the third year to demonstrate the fundamental concepts and applications of the proposed control and optimization architecture to advance CPNI. Developed solutions can be extended for range of applications in multiple CPNIs beyond use cases discussed in the proposed work.
While the proposed control architecture with edge computing offer great potential; coordinating decentralized control and optimization is extremely challenging due to variable network and computational delays, several interleavings of message arrivals, disparate failure modes of components, and cyber security threats leading to several fundamental theoretical problems. Proposed work offers number of novel solutions including (a) adaptive and delay-aware control algorithms, (b) Predictive control and distributed optimization with realistic cyber-physical constraints, (c) threat sharing, data-driven detection and mitigation for cyber security, (d) coordination and management of computing nodes, (e) knowledge learning and sharing. Proposed solutions will be a step towards advancing fundamentals in CPNI and in engineering next generation CPNI. The proposed work also aims to use high fidelity testbed to evaluate developed algorithms and tools for specific CPNI: electric distribution grid.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
|
0.931 |