2004 — 2011 |
Verdin, Eric M |
P01Activity Code Description: For the support of a broadly based, multidisciplinary, often long-term research program which has a specific major objective or a basic theme. A program project generally involves the organized efforts of relatively large groups, members of which are conducting research projects designed to elucidate the various aspects or components of this objective. Each research project is usually under the leadership of an established investigator. The grant can provide support for certain basic resources used by these groups in the program, including clinical components, the sharing of which facilitates the total research effort. A program project is directed toward a range of problems having a central research focus, in contrast to the usually narrower thrust of the traditional research project. Each project supported through this mechanism should contribute or be directly related to the common theme of the total research effort. These scientifically meritorious projects should demonstrate an essential element of unity and interdependence, i.e., a system of research activities and projects directed toward a well-defined research program goal. P51Activity Code Description: To support centers which include a multidisciplinary and multi-categorical core research program using primate animals and to maintain a large and varied primate colony which is available to affiliated, collaborative, and visiting investigators for basic and applied biomedical research and training. |
Molecular Mechanisms of Hiv Post-Integration Latency @ University of California At Davis
This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Despite the near complete suppression of detectable virus in many HIV infected patients undergoing highly active antiretroviral therapy, viremia reemerges rapidly after interruption of treatment. Postintegration latency refers to latently infected resting memory CD4+ T cells containing transcriptionally silent integrated HIV-1 genomes. Postintegration latency contributes to the persistence of the virus under HAART and represents a known barrier to eradication of HIV infection. To investigate novel approaches for AIDS therapy, our nonhuman primate model uses RT-SHIV, a chimera of simian immunodeficiency virus containing the HIV-1 reverse transcriptase (RT). Methods were developed for extraction, pre-amplification and real-time PCR analyses of viral DNA (vDNA) and viral RNA (vRNA) in tissues from RT-SHIV-infected macaques. These methods were used to identify viral reservoirs in RT-SHIV-infected macaques treated with a potent HAART regimen consisting of efavirenz, emtricitabine and tenofovir. Viral RNA and DNA were detected during HAART in tissues from numerous anatomical locations. The highest levels of vDNA and vRNA in HAART-treated macaques were in lymphoid tissues, particularly spleen, lymph nodes, and gastrointestinal tract tissues. This study is the first comprehensive analysis of tissue and organ distribution of a primate AIDS virus during HAART. These data demonstrate widespread persistence of residual virus in tissues during HAART.
|
0.941 |
2007 — 2008 |
Verdin, Eric M |
P51Activity Code Description: To support centers which include a multidisciplinary and multi-categorical core research program using primate animals and to maintain a large and varied primate colony which is available to affiliated, collaborative, and visiting investigators for basic and applied biomedical research and training. |
Non-Human Primates For Lentivirus Latency and Reservoirs @ University of California Davis |
0.941 |
2020 — 2021 |
Bautista, Diana Michele (co-PI) [⬀] Brem, Rachel Beth [⬀] Ellerby, Lisa M (co-PI) [⬀] Verdin, Eric M. |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Genetic Dissection of Trait Variation Between Long-Diverged Mouse Species @ University of California Berkeley
PROJECT SUMMARY/ABSTRACT Over the four billion years that life has evolved on this planet, organisms have acquired amazing phenotypes. Some, like lions' manes and butterflies' wings, capture our attention by their sheer beauty. Others get us excited in a very different way?their relevance to biomedicine. Ecologists have catalogued remarkable disease and stress resistance traits in the plant and animal worlds, which have arisen to solve problems similar to those in human patients. We'd love to know the molecular basis of these natural resistance phenotypes, so that we can design drugs to mimic them in the biomedical context. However, most often, we know about a given trait because it is a defining feature of its respective species, acquired long ago to adapt to a unique niche. Now, millions of years later, the species usually has lost the ability to interbreed with relatives in other environments. And this reproductive isolation is a death knell for existing tools to map genotype to phenotype. The latter, which fill the pages of the modern genetics literature, rely on big panels of recombinant progeny from matings between distinct parents. These tools are no use in the study of species that can't mate to form progeny in the first place. We have developed a new strategy to break through this roadblock, and map the genetic basis of trait variation between long-diverged species. Our approach starts with a viable, but sterile, interspecific hybrid. In this hybrid, at a given gene, we introduce mutations to disrupt each of the two alleles in turn from the two species parents. These hemizygote mutants are identical with respect to background, except that at the target gene, each strain expresses a wild-type allele from only one of the parents. As such, if the hemizygotes differ with respect to a trait of interest, we infer that it must be because of functional allelic variation at the manipulated site. We have pioneered a genome-scale pipeline for this so-called reciprocal hemizygosity test, which we call RH-seq, using yeast as proof of concept. In the current proposal we describe experiments to port RH-seq to mammalian cells. We focus on a little-studied mouse species, M. castaneus, which can regrow axons of the central nervous system after injury. The genes we find in this pioneering study will serve as a springboard for drug design for stroke and brain trauma patients. And our metazoan RH-seq approach will pave the way for the genetic dissection of trait variation between species across Eukarya.
|
0.934 |