2016 — 2018 |
Chowdhury, Masud [⬀] Hassan, Ahmed Rahman, Mostafizur |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Ii-New: Experimental Characterization and Cad Development Testbed For Nanoscale Integrated Circuits @ University of Missouri-Kansas City
The aim of this NSF CRI-II-NEW project is to develop a testbed for computer aided design (CAD) simulations, experimental metrology, and software and hardware calibrations to support cross-layer evaluation of novel nanoscale 3D heterogeneous integration of CMOS and post-CMOS technologies. Proposed tools and equipment acquisitions and sustainment will allow bottom-up evaluations from materials, fundamental physics, and experimental metrology to device and circuits to large-scale systems. The proposed infrastructure is unique and will enable thorough evaluation of new 3D heterogeneous integration concepts with accuracy only parallel to full-scale experimental prototyping. It will directly impact the nano-electromagnetics, nano-device, circuits, 3D IC and manufacturing research directions, and will also have significant impact on the big data analytics, renewable energy, smart-city, RF and electromagnetics research initiatives in Computer Science and Electrical Engineering (CSEE) department at University of Missouri-Kansas City (UMKC). The testbed will not only facilitate transformative research, but will also allow broad ranging educational and outreach activities such as new undergraduate and graduate curriculum development with lab modules, training and mentoring of research students, research dissemination thorough forums and seminars, development of online repositories and online labs, and nanotechnology awareness for K-12 students through summer workshops. The boarder impact of this project is that the proposed infrastructure will provide unique opportunities for research, education and community outreach in the fields of nanomaterials, nanodevice, nanocircuit, biosensing, heterogonous integration, and nanomanufacturing.
The research focus of this collaborative project will be to develop nanoscale heterogeneous 3D integration and testing framework for bio-sensing and computing applications leveraging novel materials, devices, circuits and integration schemes. 3D integration provides opportunities to realize systems with heterogeneous layers, such as bio-analytical device and mixed-signal information processing layers that can be vertically stacked and electrically connected through dense vias. However, such implementation with CMOS is challenging due to CMOS?s scaling limits, noise coupling between dissimilar analog and digital circuit components and limitations of die-die or layer-layer stacking. We propose a new 3-D heterogeneous integration approach that overcomes challenges by utilizing new materials such as Carbon Nanotube, MoS2, and nanoscale geometry to realize highly sensitive bio-sensors for bio-molecule detections, scalable 2-D material based ultra-low power devices that exhibit FET like switching and Negative Differential Resistance (NDR) for seamless integration of signal processing and logic components, and monolithic 3-D integration techniques with dense vias. Initial projections reveal significant benefits for such heterogeneous integration over conventional 2-D CMOS based multi-chip based approaches. If realized, this can be game-changing for mixed-signal ASICs, and as well for bio-medical applications such as point-of-care and lab-on-a-chips.
|
0.957 |