Nikolaus Kriegeskorte
Affiliations: | National Institute of Mental Health, Bethesda, MD, United States |
Area:
object vision, IT, pattern-information analysisWebsite:
http://fim.nimh.nih.gov/people/NKGoogle:
"Nikolaus Kriegeskorte"Mean distance: 13.51 (cluster 29) | S | N | B | C | P |
Children
Sign in to add traineePrashant C. Raju | research assistant | 2017-2020 | Columbia |
Aneesh Kashalikar | research assistant | 2019-2021 | Columbia |
Baihan Lin | grad student | 2017- | Columbia |
Seyed-Mahdi Khaligh-Razavi | grad student | 2012-2014 | Cambridge |
Tal Golan | post-doc | ||
Benjamin Peters | post-doc | ||
Ruben S. van Bergen | post-doc | 2019- | Columbia |
Paul Linton | post-doc | 2022- | Zuckerman Mind Brain Behavior Institute |
Vassilis Pelekanos | post-doc | 2015-2017 | MRC CBU Cambridge |
Robert M. Mok | post-doc | 2016-2017 | |
Tim Christian Kietzmann | post-doc | 2016-2019 | Cambridge |
Heiko H Schütt | post-doc | 2018-2023 | Columbia |
Olivier Joly | research scientist | 2013-2015 | MRC-CBU |
BETA: Related publications
See more...
Publications
You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect. |
Peters B, Blohm G, Haefner R, et al. (2024) Generative adversarial collaborations: a new model of scientific discourse. Trends in Cognitive Sciences |
Lin B, Kriegeskorte N. (2024) The topology and geometry of neural representations. Proceedings of the National Academy of Sciences of the United States of America. 121: e2317881121 |
Farzmahdi A, Zarco W, Freiwald WA, et al. (2024) Emergence of brain-like mirror-symmetric viewpoint tuning in convolutional neural networks. Elife. 13 |
Lippl S, Peters B, Kriegeskorte N. (2024) Can neural networks benefit from objectives that encourage iterative convergent computations? A case study of ResNets and object classification. Plos One. 19: e0293440 |
Peters B, DiCarlo JJ, Gureckis T, et al. (2024) How does the primate brain combine generative and discriminative computations in vision? Arxiv |
Golan T, Taylor J, Schütt H, et al. (2023) Deep neural networks are not a single hypothesis but a language for expressing computational hypotheses. The Behavioral and Brain Sciences. 46: e392 |
Taylor J, Kriegeskorte N. (2023) Extracting and visualizing hidden activations and computational graphs of PyTorch models with TorchLens. Scientific Reports. 13: 14375 |
Schütt HH, Kipnis AD, Diedrichsen J, et al. (2023) Statistical inference on representational geometries. Elife. 12 |
Doerig A, Sommers RP, Seeliger K, et al. (2023) The neuroconnectionist research programme. Nature Reviews. Neuroscience |
Taylor J, Kriegeskorte N. (2023) TorchLens: A Python package for extracting and visualizing hidden activations of PyTorch models. Biorxiv : the Preprint Server For Biology |