Nancy Rodriguez, Ph.D. - Publications

Affiliations: 
2011 University of California, Los Angeles, Los Angeles, CA 
Area:
Nonlinear Partial Differential Equations, Applied Mathematics

13 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2020 Hasan A, Rodríguez N, Wong L. Transport and concentration of wealth: Modeling an amenities-based-theory. Chaos (Woodbury, N.Y.). 30: 053110. PMID 32491913 DOI: 10.1063/5.0003767  0.401
2020 Rodríguez N, Hu Y. On the steady-states of a two-species non-local cross-diffusion model Journal of Applied Analysis. 26: 1-19. DOI: 10.1515/Jaa-2020-2003  0.325
2020 Rodríguez N, Winkler M. Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation Mathematical Models and Methods in Applied Sciences. DOI: 10.1142/S0218202520500396  0.344
2020 Yang C, Rodriguez N. A numerical perspective on traveling wave solutions in a system for rioting activity Applied Mathematics and Computation. 364: 124646. DOI: 10.1016/J.Amc.2019.124646  0.386
2018 Rodríguez N, Malanson G. Plant Dynamics, Birth-Jump Processes, and Sharp Traveling Waves. Bulletin of Mathematical Biology. PMID 29748838 DOI: 10.1007/S11538-018-0431-5  0.339
2018 Bonnasse-Gahot L, Berestycki H, Depuiset MA, Gordon MB, Roché S, Rodriguez N, Nadal JP. Epidemiological modelling of the 2005 French riots: a spreading wave and the role of contagion. Scientific Reports. 8: 107. PMID 29311553 DOI: 10.1038/S41598-017-18093-4  0.358
2016 Berestycki H, Rodríguez N. A non-local bistable reaction-diffusion equation with a gap Discrete and Continuous Dynamical Systems. 37: 685-723. DOI: 10.3934/Dcds.2017029  0.422
2015 Rodríguez N. On an integro-differential model for pest control in a heterogeneous environment. Journal of Mathematical Biology. 70: 1177-206. PMID 24819831 DOI: 10.1007/S00285-014-0793-8  0.316
2014 Bedrossian J, Rodríguez N. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in Rd Discrete and Continuous Dynamical Systems - Series B. 19: 1279-1309. DOI: 10.3934/Dcdsb.2014.19.1279  0.594
2013 Berestycki H, Rodríguez N, Ryzhik L. Traveling wave solutions in a reaction-diffusion model for criminal activity Multiscale Modeling and Simulation. 11: 1097-1126. DOI: 10.1137/12089884X  0.415
2013 Rodríguez N. On the global well-posedness theory for a class of PDE models for criminal activity Physica D: Nonlinear Phenomena. 260: 191-200. DOI: 10.1016/J.Physd.2012.08.003  0.347
2011 Bedrossian J, Rodríguez N, Bertozzi AL. Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion Nonlinearity. 24: 1683-1714. DOI: 10.1088/0951-7715/24/6/001  0.598
2010 Rodriguez N, Bertozzi A. Local existence and uniqueness of solutions to a PDE model for criminal behavior Mathematical Models and Methods in Applied Sciences. 20: 1425-1457. DOI: 10.1142/S0218202510004696  0.557
Show low-probability matches.