Year |
Citation |
Score |
2020 |
Hasan A, Rodríguez N, Wong L. Transport and concentration of wealth: Modeling an amenities-based-theory. Chaos (Woodbury, N.Y.). 30: 053110. PMID 32491913 DOI: 10.1063/5.0003767 |
0.401 |
|
2020 |
Rodríguez N, Hu Y. On the steady-states of a two-species non-local cross-diffusion model Journal of Applied Analysis. 26: 1-19. DOI: 10.1515/Jaa-2020-2003 |
0.325 |
|
2020 |
Rodríguez N, Winkler M. Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation Mathematical Models and Methods in Applied Sciences. DOI: 10.1142/S0218202520500396 |
0.344 |
|
2020 |
Yang C, Rodriguez N. A numerical perspective on traveling wave solutions in a system for rioting activity Applied Mathematics and Computation. 364: 124646. DOI: 10.1016/J.Amc.2019.124646 |
0.386 |
|
2018 |
Rodríguez N, Malanson G. Plant Dynamics, Birth-Jump Processes, and Sharp Traveling Waves. Bulletin of Mathematical Biology. PMID 29748838 DOI: 10.1007/S11538-018-0431-5 |
0.339 |
|
2018 |
Bonnasse-Gahot L, Berestycki H, Depuiset MA, Gordon MB, Roché S, Rodriguez N, Nadal JP. Epidemiological modelling of the 2005 French riots: a spreading wave and the role of contagion. Scientific Reports. 8: 107. PMID 29311553 DOI: 10.1038/S41598-017-18093-4 |
0.358 |
|
2016 |
Berestycki H, Rodríguez N. A non-local bistable reaction-diffusion equation with a gap Discrete and Continuous Dynamical Systems. 37: 685-723. DOI: 10.3934/Dcds.2017029 |
0.422 |
|
2015 |
Rodríguez N. On an integro-differential model for pest control in a heterogeneous environment. Journal of Mathematical Biology. 70: 1177-206. PMID 24819831 DOI: 10.1007/S00285-014-0793-8 |
0.316 |
|
2014 |
Bedrossian J, Rodríguez N. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in Rd Discrete and Continuous Dynamical Systems - Series B. 19: 1279-1309. DOI: 10.3934/Dcdsb.2014.19.1279 |
0.594 |
|
2013 |
Berestycki H, Rodríguez N, Ryzhik L. Traveling wave solutions in a reaction-diffusion model for criminal activity Multiscale Modeling and Simulation. 11: 1097-1126. DOI: 10.1137/12089884X |
0.415 |
|
2013 |
Rodríguez N. On the global well-posedness theory for a class of PDE models for criminal activity Physica D: Nonlinear Phenomena. 260: 191-200. DOI: 10.1016/J.Physd.2012.08.003 |
0.347 |
|
2011 |
Bedrossian J, Rodríguez N, Bertozzi AL. Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion Nonlinearity. 24: 1683-1714. DOI: 10.1088/0951-7715/24/6/001 |
0.598 |
|
2010 |
Rodriguez N, Bertozzi A. Local existence and uniqueness of solutions to a PDE model for criminal behavior Mathematical Models and Methods in Applied Sciences. 20: 1425-1457. DOI: 10.1142/S0218202510004696 |
0.557 |
|
Show low-probability matches. |