Year |
Citation |
Score |
2023 |
Mackevicius EL, Gu S, Denisenko NI, Fee MS. Self-organization of songbird neural sequences during social isolation. Elife. 12. PMID 37252761 DOI: 10.7554/eLife.77262 |
0.8 |
|
2023 |
Scherrer JR, Lynch GF, Zhang JJ, Fee MS. An optical design enabling lightweight and large field-of-view head-mounted microscopes. Nature Methods. PMID 36928075 DOI: 10.1038/s41592-023-01806-1 |
0.724 |
|
2022 |
Schubert PJ, Dorkenwald S, Januszewski M, Klimesch J, Svara F, Mancu A, Ahmad H, Fee MS, Jain V, Kornfeld J. SyConn2: dense synaptic connectivity inference for volume electron microscopy. Nature Methods. 19: 1367-1370. PMID 36280715 DOI: 10.1038/s41592-022-01624-x |
0.768 |
|
2020 |
Mackevicius EL, Happ MTL, Fee MS. An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units. Nature Communications. 11: 5029. PMID 33024101 DOI: 10.1038/s41467-020-18732-x |
0.817 |
|
2019 |
Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, Fee MS. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. Elife. 8. PMID 30719973 DOI: 10.7554/Elife.38471 |
0.756 |
|
2018 |
Mackevicius EL, Bahle AH, Williams AH, Gu S, Denisenko NI, Goldman MS, Fee MS. Author response: Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience Elife. DOI: 10.7554/Elife.38471.041 |
0.761 |
|
2017 |
Mackevicius EL, Fee MS. Building a state space for song learning. Current Opinion in Neurobiology. 49: 59-68. PMID 29268193 DOI: 10.1016/J.Conb.2017.12.001 |
0.826 |
|
2017 |
Danish HH, Aronov D, Fee MS. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations. Plos One. 12: e0169568. PMID 28617829 DOI: 10.1371/journal.pone.0169568 |
0.715 |
|
2016 |
Lynch GF, Okubo TS, Hanuschkin A, Hahnloser RH, Fee MS. Rhythmic Continuous-Time Coding in the Songbird Analog of Vocal Motor Cortex. Neuron. 90: 877-92. PMID 27196977 DOI: 10.1016/J.Neuron.2016.04.021 |
0.834 |
|
2015 |
Okubo TS, Mackevicius EL, Payne HL, Lynch GF, Fee MS. Growth and splitting of neural sequences in songbird vocal development. Nature. PMID 26618871 DOI: 10.1038/Nature15741 |
0.788 |
|
2014 |
Okubo TS, Mackevicius EL, Fee MS. In vivo recording of single-unit activity during singing in zebra finches. Cold Spring Harbor Protocols. 2014: 1273-83. PMID 25342072 DOI: 10.1101/Pdb.Prot084624 |
0.805 |
|
2014 |
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. A role for descending auditory cortical projections in songbird vocal learning. Elife. 3. PMID 24935934 DOI: 10.7554/eLife.02152 |
0.778 |
|
2014 |
Mandelblat-Cerf Y, Fee MS. An automated procedure for evaluating song imitation. Plos One. 9: e96484. PMID 24809510 DOI: 10.1371/journal.pone.0096484 |
0.431 |
|
2014 |
Fee MS. The role of efference copy in striatal learning. Current Opinion in Neurobiology. 25: 194-200. PMID 24566242 DOI: 10.1016/j.conb.2014.01.012 |
0.403 |
|
2014 |
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. Correction: A role for descending auditory cortical projections in songbird vocal learning Elife. 3. DOI: 10.7554/ELIFE.04371 |
0.745 |
|
2014 |
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. Author response: A role for descending auditory cortical projections in songbird vocal learning Elife. DOI: 10.7554/Elife.02152.018 |
0.377 |
|
2013 |
Goldberg JH, Farries MA, Fee MS. Basal ganglia output to the thalamus: still a paradox. Trends in Neurosciences. 36: 695-705. PMID 24188636 DOI: 10.1016/j.tins.2013.09.001 |
0.636 |
|
2013 |
Fee MS, Goldberg JH. Corrigendum to "A hypothesis for basal ganglia-dependent reinforcement learning in the songbird" [Neuroscience 198 (2011) 152-170] Neuroscience. 255: 301. DOI: 10.1016/j.neuroscience.2013.07.020 |
0.627 |
|
2012 |
Aronov D, Fee MS. Natural changes in brain temperature underlie variations in song tempo during a mating behavior. Plos One. 7: e47856. PMID 23112858 DOI: 10.1371/journal.pone.0047856 |
0.69 |
|
2012 |
Fee MS. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions. Frontiers in Neural Circuits. 6: 38. PMID 22754501 DOI: 10.3389/fncir.2012.00038 |
0.491 |
|
2012 |
Goldberg JH, Farries MA, Fee MS. Integration of cortical and pallidal inputs in the basal ganglia-recipient thalamus of singing birds. Journal of Neurophysiology. 108: 1403-29. PMID 22673333 DOI: 10.1152/jn.00056.2012 |
0.649 |
|
2012 |
Goldberg JH, Fee MS. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds. Nature Neuroscience. 15: 620-7. PMID 22327474 DOI: 10.1038/nn.3047 |
0.686 |
|
2012 |
Scott BB, Gardner T, Ji N, Fee MS, Lois C. Wandering neuronal migration in the postnatal vertebrate forebrain. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 1436-46. PMID 22279228 DOI: 10.1523/JNEUROSCI.2145-11.2012 |
0.585 |
|
2011 |
Aronov D, Veit L, Goldberg JH, Fee MS. Two distinct modes of forebrain circuit dynamics underlie temporal patterning in the vocalizations of young songbirds. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 31: 16353-68. PMID 22072687 DOI: 10.1523/Jneurosci.3009-11.2011 |
0.793 |
|
2011 |
Fee MS, Goldberg JH. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience. 198: 152-70. PMID 22015923 DOI: 10.1016/j.neuroscience.2011.09.069 |
0.688 |
|
2011 |
Andalman AS, Foerster JN, Fee MS. Control of vocal and respiratory patterns in birdsong: dissection of forebrain and brainstem mechanisms using temperature. Plos One. 6: e25461. PMID 21980466 DOI: 10.1371/journal.pone.0025461 |
0.787 |
|
2011 |
Fee MS, Long MA. New methods for localizing and manipulating neuronal dynamics in behaving animals. Current Opinion in Neurobiology. 21: 693-700. PMID 21763124 DOI: 10.1016/j.conb.2011.06.010 |
0.634 |
|
2011 |
Veit L, Aronov D, Fee MS. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds. Journal of Neurophysiology. 106: 1747-65. PMID 21697438 DOI: 10.1152/Jn.00247.2011 |
0.797 |
|
2011 |
Ölveczky BP, Otchy TM, Goldberg JH, Aronov D, Fee MS. Changes in the neural control of a complex motor sequence during learning. Journal of Neurophysiology. 106: 386-97. PMID 21543758 DOI: 10.1152/jn.00018.2011 |
0.806 |
|
2011 |
Goldberg JH, Fee MS. Vocal babbling in songbirds requires the basal ganglia-recipient motor thalamus but not the basal ganglia. Journal of Neurophysiology. 105: 2729-39. PMID 21430276 DOI: 10.1152/jn.00823.2010 |
0.663 |
|
2011 |
Aronov D, Fee MS. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device. Journal of Neuroscience Methods. 197: 32-47. PMID 21291909 DOI: 10.1016/j.jneumeth.2011.01.024 |
0.667 |
|
2010 |
Fee MS, Scharff C. The songbird as a model for the generation and learning of complex sequential behaviors. Ilar Journal / National Research Council, Institute of Laboratory Animal Resources. 51: 362-77. PMID 21131713 DOI: 10.1093/Ilar.51.4.362 |
0.473 |
|
2010 |
Long MA, Jin DZ, Fee MS. Support for a synaptic chain model of neuronal sequence generation. Nature. 468: 394-9. PMID 20972420 DOI: 10.1038/nature09514 |
0.798 |
|
2010 |
Goldberg JH, Adler A, Bergman H, Fee MS. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 7088-98. PMID 20484651 DOI: 10.1523/JNEUROSCI.0168-10.2010 |
0.67 |
|
2010 |
Goldberg JH, Fee MS. Singing-related neural activity distinguishes four classes of putative striatal neurons in the songbird basal ganglia. Journal of Neurophysiology. 103: 2002-14. PMID 20107125 DOI: 10.1152/jn.01038.2009 |
0.661 |
|
2009 |
Andalman AS, Fee MS. A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proceedings of the National Academy of Sciences of the United States of America. 106: 12518-23. PMID 19597157 DOI: 10.1073/pnas.0903214106 |
0.792 |
|
2009 |
Arfin SK, Long MA, Fee MS, Sarpeshkar R. Wireless neural stimulation in freely behaving small animals. Journal of Neurophysiology. 102: 598-605. PMID 19386759 DOI: 10.1152/Jn.00017.2009 |
0.56 |
|
2008 |
Sarpeshkar R, Wattanapanitch W, Arfin SK, Rapoport BI, Mandal S, Baker MW, Fee MS, Musallam S, Andersen RA. Low-power circuits for brain-machine interfaces. Ieee Transactions On Biomedical Circuits and Systems. 2: 173-83. PMID 23852967 DOI: 10.1109/Tbcas.2008.2003198 |
0.351 |
|
2008 |
Long MA, Fee MS. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature. 456: 189-94. PMID 19005546 DOI: 10.1038/nature07448 |
0.617 |
|
2008 |
Aronov D, Andalman AS, Fee MS. A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science (New York, N.Y.). 320: 630-4. PMID 18451295 DOI: 10.1126/science.1155140 |
0.817 |
|
2007 |
Fiete IR, Fee MS, Seung HS. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. Journal of Neurophysiology. 98: 2038-57. PMID 17652414 DOI: 10.1152/jn.01311.2006 |
0.775 |
|
2007 |
Kozhevnikov AA, Fee MS. Singing-related activity of identified HVC neurons in the zebra finch. Journal of Neurophysiology. 97: 4271-83. PMID 17182906 DOI: 10.1152/jn.00952.2006 |
0.654 |
|
2007 |
Hahnloser RH, Fee MS. Sleep-related spike bursts in HVC are driven by the nucleus interface of the nidopallium. Journal of Neurophysiology. 97: 423-35. PMID 17005618 DOI: 10.1152/jn.00547.2006 |
0.719 |
|
2007 |
Wattanapanitch W, Fee M, Sarpeshkar R. An energy-efficient micropower neural recording amplifier Ieee Transactions On Biomedical Circuits and Systems. 1: 136-147. DOI: 10.1109/Tbcas.2007.907868 |
0.315 |
|
2006 |
Hahnloser RH, Kozhevnikov AA, Fee MS. Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird. Journal of Neurophysiology. 96: 794-812. PMID 16495362 DOI: 10.1152/jn.01064.2005 |
0.771 |
|
2005 |
Olveczky BP, Andalman AS, Fee MS. Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. Plos Biology. 3: e153. PMID 15826219 DOI: 10.1371/journal.pbio.0030153 |
0.83 |
|
2005 |
Leonardo A, Fee MS. Ensemble coding of vocal control in birdsong. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 25: 652-61. PMID 15659602 DOI: 10.1523/JNEUROSCI.3036-04.2005 |
0.707 |
|
2004 |
Brecht M, Fee MS, Garaschuk O, Helmchen F, Margrie TW, Svoboda K, Osten P. Novel approaches to monitor and manipulate single neurons in vivo. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 24: 9223-7. PMID 15496655 DOI: 10.1523/JNEUROSCI.3344-04.2004 |
0.335 |
|
2004 |
Fee MS, Kozhevnikov AA, Hahnloser RH. Neural mechanisms of vocal sequence generation in the songbird. Annals of the New York Academy of Sciences. 1016: 153-70. PMID 15313774 DOI: 10.1196/annals.1298.022 |
0.828 |
|
2004 |
Fiete IR, Hahnloser RH, Fee MS, Seung HS. Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong. Journal of Neurophysiology. 92: 2274-82. PMID 15071087 DOI: 10.1152/jn.01133.2003 |
0.834 |
|
2003 |
Luo M, Fee MS, Katz LC. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science (New York, N.Y.). 299: 1196-201. PMID 12595684 DOI: 10.1126/science.1082133 |
0.339 |
|
2002 |
Hahnloser RH, Kozhevnikov AA, Fee MS. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature. 419: 65-70. PMID 12214232 DOI: 10.1038/nature00974 |
0.803 |
|
2001 |
Fee MS, Leonardo A. Miniature motorized microdrive and commutator system for chronic neural recording in small animals. Journal of Neuroscience Methods. 112: 83-94. PMID 11716944 DOI: 10.1016/S0165-0270(01)00426-5 |
0.669 |
|
2001 |
Helmchen F, Fee MS, Tank DW, Denk W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron. 31: 903-12. PMID 11580892 DOI: 10.1016/S0896-6273(01)00421-4 |
0.713 |
|
2000 |
Fee MS. Active stabilization of electrodes for intracellular recording in awake behaving animals. Neuron. 27: 461-8. PMID 11055429 DOI: 10.1016/S0896-6273(00)00057-X |
0.347 |
|
1999 |
Venkatachalam S, Fee MS, Kleinfeld D. Ultra-miniature headstage with 6-channel drive and vacuum-assisted micro-wire implantation for chronic recording from the neocortex. Journal of Neuroscience Methods. 90: 37-46. PMID 10517272 DOI: 10.1016/S0165-0270(99)00065-5 |
0.5 |
|
1998 |
Fee MS, Shraiman B, Pesaran B, Mitra PP. The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird. Nature. 395: 67-71. PMID 12071206 DOI: 10.1038/25725 |
0.417 |
|
1997 |
Fee MS, Mitra PP, Kleinfeld D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. Journal of Neurophysiology. 78: 1144-9. PMID 9307141 DOI: 10.1152/Jn.1997.78.2.1144 |
0.577 |
|
1997 |
Fee MS, Mitra PP, Kleinfeld D. Erratum to `Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability' Journal of Neuroscience Methods. 71: 233. DOI: 10.1016/S0165-0270(96)02233-9 |
0.567 |
|
1996 |
Fee MS, Mitra PP, Kleinfeld D. Variability of extracellular spike waveforms of cortical neurons. Journal of Neurophysiology. 76: 3823-33. PMID 8985880 DOI: 10.1152/Jn.1996.76.6.3823 |
0.564 |
|
1996 |
Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. Journal of Neuroscience Methods. 69: 175-88. PMID 8946321 DOI: 10.1016/S0165-0270(96)00050-7 |
0.562 |
|
1994 |
Delaney KR, Gelperin A, Fee MS, Flores JA, Gervais R, Tank DW, Kleinfeld D. Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proceedings of the National Academy of Sciences of the United States of America. 91: 669-73. PMID 8290580 DOI: 10.1073/Pnas.91.2.669 |
0.697 |
|
1994 |
Kleinfeld D, Delaney KR, Fee MS, Flores JA, Tank DW, Gelperin A. Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. Journal of Neurophysiology. 72: 1402-19. PMID 7807221 DOI: 10.1152/Jn.1994.72.3.1402 |
0.714 |
|
1993 |
Fee MS, Mills AP, Chu S, Shaw ED, Danzmann K, Chichester RJ, Zuckerman DM. Measurement of the positronium 1(3)S1-2(3)S1 interval by continuous-wave two-photon excitation. Physical Review Letters. 70: 1397-1400. PMID 10053282 DOI: 10.1103/Physrevlett.70.1397 |
0.399 |
|
1993 |
Fee MS, Chu S, Mills AP, Chichester RJ, Zuckerman DM, Shaw ED, Danzmann K. Measurement of the positronium 1 (3)S1-2 (3)S1 interval by continuous-wave two-photon excitation. Physical Review. A. 48: 192-219. PMID 9909589 DOI: 10.1103/Physreva.48.192 |
0.417 |
|
1993 |
Fee MS, Chu S, Mills AP, Chichester RJ, Zuckerman DM, Shaw ED, Danzmann K. Measurement of the positronium 1 3S1-2 3S1 interval by continuous-wave two-photon excitation Physical Review A. 48: 192-219. DOI: 10.1103/PhysRevA.48.192 |
0.323 |
|
1992 |
Fee MS, Danzmann K, Chu S. Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy. Physical Review. A. 45: 4911-4924. PMID 9907574 DOI: 10.1103/Physreva.45.4911 |
0.337 |
|
1991 |
Fee MS, Mills AP, Shaw ED, Chichester RJ, Zuckerman DM, Chu S, Danzmann K. Sensitive detection of Doppler-free two-photon-excited 2S positronium by spatially separated photoionization. Physical Review. A. 44: R5-R8. PMID 9905741 DOI: 10.1103/Physreva.44.R5 |
0.428 |
|
1989 |
Danzmann K, Fee MS, Chu S. Doppler-free laser spectroscopy of positronium and muonium: Reanalysis of the 1S-2S measurements. Physical Review. A. 39: 6072-6073. PMID 9901204 DOI: 10.1103/Physreva.39.6072 |
0.402 |
|
1989 |
Danzmann K, Fee MS, Chu S. Precision Laser Spectroscopy of Positronium - Recent Progress Laser Spectroscopy. 328-331. DOI: 10.1016/B978-0-12-251930-7.50094-7 |
0.425 |
|
1989 |
Fee M, Chu S, Hänsch TW. Scanning electromagnetic transmission line microscope with sub-wavelength resolution Optics Communications. 69: 219-224. DOI: 10.1016/0030-4018(89)90103-X |
0.418 |
|
Show low-probability matches. |