Year |
Citation |
Score |
2021 |
Ferrario A, Palyanov A, Koutsikou S, Li W, Soffe S, Roberts A, Borisyuk R. From decision to action: Detailed modelling of frog tadpoles reveals neuronal mechanisms of decision-making and reproduces unpredictable swimming movements in response to sensory signals. Plos Computational Biology. 17: e1009654. PMID 34898604 DOI: 10.1371/journal.pcbi.1009654 |
0.37 |
|
2020 |
Conte D, Borisyuk R, Hull M, Roberts A. A simple method defines 3D morphology and axon projections of filled neurons in a small CNS volume: steps toward understanding functional network circuitry. Journal of Neuroscience Methods. 109062. PMID 33383055 DOI: 10.1016/j.jneumeth.2020.109062 |
0.602 |
|
2019 |
Roberts A, Borisyuk R, Buhl E, Ferrario A, Koutsikou S, Li WC, Soffe SR. The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate. Proceedings. Biological Sciences. 286: 20190297. PMID 30900536 DOI: 10.1098/Rspb.2019.0297 |
0.701 |
|
2018 |
Koutsikou S, Merrison-Hort R, Buhl E, Ferrario A, Li WC, Borisyuk R, Soffe SR, Roberts A. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times. The Journal of Physiology. PMID 30074236 DOI: 10.1113/Jp276356 |
0.677 |
|
2017 |
Juárez-Morales JL, Martinez-De Luna RI, Zuber ME, Roberts A, Lewis KE. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons. Developmental Neurobiology. PMID 28188691 DOI: 10.1002/Dneu.22490 |
0.529 |
|
2016 |
Hull MJ, Soffe SR, Willshaw DJ, Roberts A. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity. Plos Computational Biology. 12: e1004702. PMID 26824331 DOI: 10.1371/Journal.Pcbi.1004702 |
0.774 |
|
2015 |
Buhl E, Soffe SR, Roberts A. Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making. The Journal of Physiology. 593: 4423-37. PMID 26138033 DOI: 10.1113/Jp270792 |
0.703 |
|
2015 |
Hull MJ, Soffe SR, Willshaw DJ, Roberts A. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity. Plos Computational Biology. 11: e1004240. PMID 25954930 DOI: 10.1371/Journal.Pcbi.1004240 |
0.731 |
|
2014 |
Borisyuk R, Al Azad AK, Conte D, Roberts A, Soffe SR. A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model. Plos One. 9: e89461. PMID 24586794 DOI: 10.1371/Journal.Pone.0089461 |
0.647 |
|
2014 |
Roberts A, Conte D, Hull M, Merrison-Hort R, al Azad AK, Buhl E, Borisyuk R, Soffe SR. Can simple rules control development of a pioneer vertebrate neuronal network generating behavior? The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 608-21. PMID 24403159 DOI: 10.1523/Jneurosci.3248-13.2014 |
0.785 |
|
2012 |
Winlove CI, Roberts A. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents. The European Journal of Neuroscience. 36: 2926-40. PMID 22775205 DOI: 10.1111/J.1460-9568.2012.08208.X |
0.528 |
|
2012 |
Buhl E, Roberts A, Soffe SR. The role of a trigeminal sensory nucleus in the initiation of locomotion. The Journal of Physiology. 590: 2453-69. PMID 22393253 DOI: 10.1113/Jphysiol.2012.227934 |
0.732 |
|
2012 |
Roberts A, Li WC, Soffe SR. A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord. Developmental Neurobiology. 72: 575-84. PMID 21485014 DOI: 10.1002/Dneu.20889 |
0.527 |
|
2012 |
Hull M, Willshaw D, Roberts A. The role of electrical coupling in the decision to initiate swimming in young frog tadpoles Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P58 |
0.774 |
|
2011 |
Borisyuk R, Al Azad AK, Conte D, Roberts A, Soffe SR. Modeling the connectome of a simple spinal cord. Frontiers in Neuroinformatics. 5: 20. PMID 21977016 DOI: 10.3389/Fninf.2011.00020 |
0.682 |
|
2011 |
Winlove CI, Roberts A. Pharmacology of currents underlying the different firing patterns of spinal sensory neurons and interneurons identified in vivo using multivariate analysis. Journal of Neurophysiology. 105: 2487-500. PMID 21346204 DOI: 10.1152/Jn.00779.2010 |
0.539 |
|
2011 |
Kalam al Azad A, Borisyuk R, Roberts A, Soffe S. Gradient based spinal cord axogenesis and locomotor connectome of the hatchling Xenopus tadpole Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-O9 |
0.557 |
|
2010 |
Li WC, Roberts A, Soffe SR. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 30: 16609-20. PMID 21148000 DOI: 10.1523/Jneurosci.3695-10.2010 |
0.541 |
|
2010 |
Roberts A, Li WC, Soffe SR. How neurons generate behavior in a hatchling amphibian tadpole: an outline. Frontiers in Behavioral Neuroscience. 4: 16. PMID 20631854 DOI: 10.3389/Fnbeh.2010.00016 |
0.529 |
|
2010 |
Berkowitz A, Roberts A, Soffe SR. Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Frontiers in Behavioral Neuroscience. 4: 36. PMID 20631847 DOI: 10.3389/Fnbeh.2010.00036 |
0.489 |
|
2009 |
Soffe SR, Roberts A, Li WC. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. The Journal of Physiology. 587: 4829-44. PMID 19703959 DOI: 10.1113/Jphysiol.2009.175208 |
0.592 |
|
2009 |
Wolf E, Soffe SR, Roberts A. Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles. Journal of Computational Neuroscience. 27: 291-308. PMID 19288183 DOI: 10.1007/S10827-009-0143-9 |
0.527 |
|
2009 |
Roberts A, Feetham B, Pajak M, Teare T. Responses of hatchling Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae. The Journal of Experimental Biology. 212: 914-21. PMID 19282488 DOI: 10.1242/Jeb.027250 |
0.306 |
|
2009 |
Li WC, Roberts A, Soffe SR. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. The Journal of Physiology. 587: 1677-93. PMID 19221124 DOI: 10.1113/Jphysiol.2008.166942 |
0.429 |
|
2008 |
Borisyuk R, Cooke T, Roberts A. Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole. Bio Systems. 93: 101-14. PMID 18547713 DOI: 10.1016/J.Biosystems.2008.03.012 |
0.46 |
|
2008 |
Roberts A, Li WC, Soffe SR. Roles for inhibition: studies on networks controlling swimming in young frog tadpoles. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 194: 185-93. PMID 18228081 DOI: 10.1007/S00359-007-0273-3 |
0.57 |
|
2008 |
Roberts A, Li WC, Soffe SR, Wolf E. Origin of excitatory drive to a spinal locomotor network. Brain Research Reviews. 57: 22-8. PMID 17825424 DOI: 10.1016/J.Brainresrev.2007.06.015 |
0.567 |
|
2007 |
Li WC, Sautois B, Roberts A, Soffe SR. Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 27: 12267-76. PMID 17989292 DOI: 10.1523/Jneurosci.3694-07.2007 |
0.579 |
|
2007 |
Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, Roberts A. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Development. 2: 17. PMID 17845723 DOI: 10.1186/1749-8104-2-17 |
0.566 |
|
2007 |
Sautois B, Soffe SR, Li WC, Roberts A. Role of type-specific neuron properties in a spinal cord motor network. Journal of Computational Neuroscience. 23: 59-77. PMID 17237908 DOI: 10.1007/S10827-006-0019-1 |
0.566 |
|
2007 |
Sautois B, Li W, Soffe S, Roberts A. Specificity of synaptic connections formed during development of a functioning neuronal network Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-S21 |
0.581 |
|
2006 |
Li WC, Soffe SR, Wolf E, Roberts A. Persistent responses to brief stimuli: feedback excitation among brainstem neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 26: 4026-35. PMID 16611819 DOI: 10.1523/Jneurosci.4727-05.2006 |
0.568 |
|
2004 |
Li WC, Soffe SR, Roberts A. Glutamate and acetylcholine corelease at developing synapses. Proceedings of the National Academy of Sciences of the United States of America. 101: 15488-93. PMID 15494439 DOI: 10.1073/Pnas.0404864101 |
0.55 |
|
2004 |
Li WC, Higashijima S, Parry DM, Roberts A, Soffe SR. Primitive roles for inhibitory interneurons in developing frog spinal cord. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 24: 5840-8. PMID 15215306 DOI: 10.1523/Jneurosci.1633-04.2004 |
0.558 |
|
2004 |
Li WC, Soffe SR, Roberts A. Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway. Journal of Neurophysiology. 92: 895-904. PMID 15028739 DOI: 10.1152/Jn.00024.2004 |
0.569 |
|
2004 |
Li WC, Soffe SR, Roberts A. A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. Journal of Neurophysiology. 92: 380-6. PMID 14999043 DOI: 10.1152/Jn.01238.2003 |
0.441 |
|
2004 |
Lambert TD, Li WC, Soffe SR, Roberts A. Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition. Journal of Comparative Physiology. a, Neuroethology, Sensory, Neural, and Behavioral Physiology. 190: 331-42. PMID 14991305 DOI: 10.1007/S00359-004-0505-8 |
0.538 |
|
2004 |
Lambert TD, Howard J, Plant A, Soffe S, Roberts A. Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles. The Journal of Experimental Biology. 207: 1113-25. PMID 14978054 DOI: 10.1242/Jeb.00866 |
0.386 |
|
2003 |
Li WC, Soffe SR, Roberts A. The spinal interneurons and properties of glutamatergic synapses in a primitive vertebrate cutaneous flexion reflex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 9068-77. PMID 14534240 DOI: 10.1523/Jneurosci.23-27-09068.2003 |
0.594 |
|
2003 |
Li WC, Perrins R, Walford A, Roberts A. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles Journal of Comparative Physiology a: Neuroethology, Sensory, Neural, and Behavioral Physiology. 189: 29-37. PMID 12548427 DOI: 10.1007/S00359-002-0372-0 |
0.597 |
|
2002 |
Li WC, Soffe SR, Roberts A. Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 22: 10924-34. PMID 12486187 DOI: 10.1523/Jneurosci.22-24-10924.2002 |
0.578 |
|
2002 |
Tunstall MJ, Roberts A, Soffe SR. Modelling inter-segmental coordination of neuronal oscillators: synaptic mechanisms for uni-directional coupling during swimming in Xenopus tadpoles. Journal of Computational Neuroscience. 13: 143-58. PMID 12215727 DOI: 10.1023/A:1020114324350 |
0.452 |
|
2002 |
Perrins R, Walford A, Roberts A. Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 22: 4229-40. PMID 12019340 DOI: 10.1523/Jneurosci.22-10-04229.2002 |
0.592 |
|
2001 |
Li W, Perrins R, Soffe SR, Yoshida M, Walford A, Roberts A. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles. The Journal of Comparative Neurology. 441: 248-265. PMID 11745648 DOI: 10.1002/Cne.1410 |
0.421 |
|
2001 |
Soffe SR, Zhao FY, Roberts A. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles European Journal of Neuroscience. 13: 617-627. PMID 11168570 DOI: 10.1046/J.1460-9568.2001.01419.X |
0.515 |
|
2000 |
Roberts A. Early functional organization of spinal neurons in developing lower vertebrates Brain Research Bulletin. 53: 585-593. PMID 11165794 DOI: 10.1016/S0361-9230(00)00392-0 |
0.6 |
|
1999 |
Roberts A, Walford A, Soffe SR, Yoshida M. Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: Features, distribution, and central synapses Journal of Comparative Neurology. 411: 472-486. PMID 10413780 DOI: 10.1002/(Sici)1096-9861(19990830)411:3<472::Aid-Cne9>3.0.Co;2-B |
0.467 |
|
1998 |
Roberts A, Soffe SR, Wolf ES, Yoshida M, Zhao FY. Central circuits controlling locomotion in young frog tadpoles. Annals of the New York Academy of Sciences. 860: 19-34. PMID 9928299 DOI: 10.1111/J.1749-6632.1998.Tb09036.X |
0.541 |
|
1998 |
Zhao FY, Roberts A. Assessing the roles of glutamatergic and cholinergic synaptic drive in the control of fictive swimming frequency in young Xenopus tadpoles Journal of Comparative Physiology - a Sensory, Neural, and Behavioral Physiology. 183: 753-758. PMID 9861707 DOI: 10.1007/S003590050298 |
0.423 |
|
1998 |
Yoshida M, Roberts A, Soffe SR. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling Journal of Comparative Neurology. 400: 504-518. PMID 9786411 DOI: 10.1002/(Sici)1096-9861(19981102)400:4<504::Aid-Cne5>3.0.Co;2-E |
0.401 |
|
1998 |
Zhao FY, Wolf E, Roberts A. Longitudinal distribution of components of excitatory synaptic input to motoneurones during swimming in young Xenopus tadpoles: Experiments with antagonists Journal of Physiology. 511: 887-901. PMID 9714868 DOI: 10.1111/J.1469-7793.1998.887Bg.X |
0.486 |
|
1998 |
Wolf E, Zhao FY, Roberts A. Non-linear summation of excitatory synaptic inputs to small neurones: A case study in spinal motoneurones of the young Xenopus tadpole Journal of Physiology. 511: 871-886. PMID 9714867 DOI: 10.1111/J.1469-7793.1998.871Bg.X |
0.523 |
|
1998 |
Zhao FY, Burton BG, Wolf E, Roberts A. Asymmetries in sensory pathways from skin to motoneurons on each side of the body determine the direction of an avoidance response in hatchling Xenopus tadpoles. The Journal of Physiology. 506: 471-87. PMID 9490873 DOI: 10.1111/J.1469-7793.1998.471Bw.X |
0.486 |
|
1995 |
Perrins R, Roberts A. Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo Journal of Physiology. 485: 135-144. PMID 7658368 DOI: 10.1113/Jphysiol.1995.Sp020718 |
0.546 |
|
1995 |
Wolf E, Roberts A. The influence of promotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: A simulation study European Journal of Neuroscience. 7: 671-678. PMID 7620618 DOI: 10.1111/J.1460-9568.1995.Tb00671.X |
0.498 |
|
1995 |
Roberts A, Tunstall MJ, Wolf E. Properties of networks controlling locomotion and significance of voltage dependency of NMDA channels: Simulation study of rhythm generation sustained by positive feedback Journal of Neurophysiology. 73: 485-495. PMID 7539058 DOI: 10.1152/Jn.1995.73.2.485 |
0.508 |
|
1994 |
Tunstall MJ, Roberts A. A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co-ordination of swimming Journal of Physiology. 474: 393-405. PMID 8014901 DOI: 10.1113/Jphysiol.1994.Sp020031 |
0.583 |
|
1994 |
Perrins R, Roberts A. Nicotinic and muscarinic ACh receptors in rhythmically active spinal neurones in the Xenopus laevis embryo Journal of Physiology. 478: 221-228. PMID 7965843 DOI: 10.1113/Jphysiol.1994.Sp020244 |
0.442 |
|
1993 |
Sillar KT, Roberts A. Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator. The Journal of Physiology. 472: 557-72. PMID 8145161 DOI: 10.1113/Jphysiol.1993.Sp019962 |
0.667 |
|
1993 |
Harper CE, Roberts A. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 340: 141-160. PMID 8099742 DOI: 10.1098/Rstb.1993.0053 |
0.528 |
|
1993 |
Orlovsky GN, Roberts A, Soffe SR. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends in Neurosciences. 16: 227-33. PMID 7688164 DOI: 10.1016/0166-2236(93)90161-E |
0.462 |
|
1992 |
Sillar KT, Roberts A. Phase-dependent Modulation of a Cutaneous Sensory Pathway by Glycinergic Inhibition from the Locomotor Rhythm Generator in Xenopus Embryos. The European Journal of Neuroscience. 4: 1022-1034. PMID 12106408 DOI: 10.1111/J.1460-9568.1992.Tb00129.X |
0.697 |
|
1992 |
Boothby KM, Roberts A. The stopping response of Xenopus laevis embryos: behaviour, development and physiology. Journal of Comparative Physiology. a, Sensory, Neural, and Behavioral Physiology. 170: 171-80. PMID 1583603 DOI: 10.1007/Bf00196899 |
0.424 |
|
1992 |
Sillar KT, Roberts A. The role of premotor interneurons in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos. The Journal of Neuroscience. 12: 1647-1657. DOI: 10.1523/Jneurosci.12-05-01647.1992 |
0.488 |
|
1991 |
Tunstall MJ, Roberts A. Longitudinal coordination of motor output during swimming in Xenopus embryos Proceedings of the Royal Society B: Biological Sciences. 244: 27-32. PMID 1677193 DOI: 10.1098/Rspb.1991.0046 |
0.44 |
|
1991 |
Sillar KT, Roberts A. Segregation of NMDA and non-NMDA receptors at separate synaptic contacts: evidence from spontaneous EPSPs in Xenopus embryo spinal neurons. Brain Research. 545: 24-32. PMID 1650276 DOI: 10.1016/0006-8993(91)91265-3 |
0.659 |
|
1990 |
Roberts A, Tunstall MJ. Mutual Re-excitation with Post-Inhibitory Rebound: A Simulation Study on the Mechanisms for Locomotor Rhythm Generation in the Spinal Cord of Xenopus Embryos. European Journal of Neuroscience. 2: 11-23. PMID 12106099 DOI: 10.1111/J.1460-9568.1990.Tb00377.X |
0.531 |
|
1990 |
Roberts A, Sillar KT. Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos. The European Journal of Neuroscience. 2: 1051-1062. PMID 12106066 DOI: 10.1111/J.1460-9568.1990.Tb00017.X |
0.762 |
|
1989 |
Soffe SR, Roberts A. The Influence of Magnesium Ions on the NMDA Mediated Responses of Ventral Rhythmic Neurons in the Spinal Cord of Xenopus Embryos. The European Journal of Neuroscience. 1: 507-515. PMID 12106136 DOI: 10.1111/J.1460-9568.1989.Tb00357.X |
0.473 |
|
1989 |
ROBERTS A. The Neurons that Control Axial Movements in a Frog Embryo American Zoologist. 29: 53-63. DOI: 10.1093/ICB/29.1.53 |
0.321 |
|
1989 |
Roberts A. Nerve cells and animal behaviour Trends in Neurosciences. 12: 360. DOI: 10.1016/0166-2236(89)90045-3 |
0.38 |
|
1988 |
Sillar KT, Roberts A. A neuronal mechanism for sensory gating during locomotion in a vertebrate. Nature. 331: 262-5. PMID 3336439 DOI: 10.1038/331262A0 |
0.739 |
|
1988 |
Sillar KT, Roberts A. Unmyelinated cutaneous afferent neurons activate two types of excitatory amino acid receptor in the spinal cord of Xenopus laevis embryos. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 8: 1350-60. PMID 2895802 DOI: 10.1523/Jneurosci.08-04-01350.1988 |
0.737 |
|
1987 |
Roberts A, Dale N, Ottersen OP, Storm-Mathisen J. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos. The Journal of Comparative Neurology. 261: 435-49. PMID 3611420 DOI: 10.1002/Cne.902610308 |
0.673 |
|
1987 |
Dale N, Roberts A, Ottersen OP, Storm-Mathisen J. The development of a population of spinal cord neurons and their axonal projections revealed by GABA immunocytochemistry in frog embryos. Proceedings of the Royal Society of London. Series B, Biological Sciences. 232: 205-15. PMID 2892205 DOI: 10.1098/Rspb.1987.0069 |
0.626 |
|
1986 |
Dale N, Ottersen OP, Roberts A, Storm-Mathisen J. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature. 324: 255-7. PMID 3785396 DOI: 10.1038/324255A0 |
0.613 |
|
1986 |
Roberts A, Alford ST. Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments. The Journal of Comparative Neurology. 250: 253-61. PMID 3745515 DOI: 10.1002/Cne.902500212 |
0.485 |
|
1985 |
Roberts A, Patton DT. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos. Journal of Neuroscience Research. 13: 23-38. PMID 3871863 DOI: 10.1002/JNR.490130103 |
0.354 |
|
1985 |
Roberts A, Dale N, Evoy WH, Soffe SR. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos. Journal of Neurophysiology. 54: 1-10. PMID 2993537 DOI: 10.1152/Jn.1985.54.1.1 |
0.659 |
|
1985 |
Dale N, Roberts A. Dual-component amino-acid-mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. The Journal of Physiology. 363: 35-59. PMID 2862278 DOI: 10.1113/Jphysiol.1985.Sp015694 |
0.635 |
|
1984 |
Soffe SR, Clarke JD, Roberts A. Activity of commissural interneurons in spinal cord of Xenopus embryos. Journal of Neurophysiology. 51: 1257-67. PMID 6737030 DOI: 10.1152/Jn.1984.51.6.1257 |
0.523 |
|
1984 |
Dale N, Roberts A. Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming. The Journal of Physiology. 348: 527-43. PMID 6325674 DOI: 10.1113/Jphysiol.1984.Sp015123 |
0.605 |
|
1984 |
Clarke JD, Hayes BP, Hunt SP, Roberts A. Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. The Journal of Physiology. 348: 511-25. PMID 6201612 DOI: 10.1113/Jphysiol.1984.Sp015122 |
0.48 |
|
1983 |
Kitson DL, Roberts A. Competition during innervation of embryonic amphibian head skin. Proceedings of the Royal Society B: Biological Sciences. 218: 49-59. PMID 6135211 DOI: 10.1098/Rspb.1983.0025 |
0.334 |
|
1983 |
Soffe SR, Clarke JDW, Roberts A. Swimming and other centrally generated motor patterns in newt embryos Journal of Comparative Physiology ? A. 152: 535-544. DOI: 10.1007/Bf00606443 |
0.381 |
|
1983 |
Roberts A, Clarke JDW. The sensory systems of embryos of the newt:Triturus vulgaris Journal of Comparative Physiology ? A. 152: 529-534. DOI: 10.1007/Bf00606442 |
0.351 |
|
1982 |
Kahn JA, Roberts A. Experiments on the central pattern generator for swimming in amphibian embryos. Philosophical Transactions of the Royal Society B. 296: 229-243. PMID 17506220 DOI: 10.1098/Rstb.1982.0004 |
0.425 |
|
1982 |
Roberts A, Khan JA. Intracellular recordings from spinal neurons during 'swimming' in paralysed amphibian embryos. Philosophical Transactions of the Royal Society B. 296: 213-228. PMID 17506219 DOI: 10.1098/Rstb.1982.0003 |
0.527 |
|
1982 |
Roberts A, Clarke JD. The neuroanatomy of an amphibian embryo spinal cord Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 296: 195-212. PMID 17506218 DOI: 10.1098/Rstb.1982.0002 |
0.526 |
|
1982 |
Foster RG, Roberts A. The pineal eye inXenopus laevis embryos and larvae: A photoreceptor with a direct excitatory effect on behaviour Journal of Comparative Physiology ? A. 145: 413-419. DOI: 10.1007/Bf00619346 |
0.345 |
|
1980 |
Roberts A. The function and role of two types of mechanoreceptive ?free? nerve endings in the head skin of amphibian embryos Journal of Comparative Physiology ? A. 135: 341-348. DOI: 10.1007/Bf00657650 |
0.439 |
|
1977 |
Roberts A. Neuronal growth cones in an amphibian embryo. Brain Research. 118: 526-30. PMID 1009441 DOI: 10.1016/0006-8993(76)90326-7 |
0.446 |
|
1977 |
Roberts A, Hayes BP. The anatomy and function of 'free' nerve endings in an amphibian skin sensory system Proceedings of the Royal Society of London - Biological Sciences. 196: 415-429. PMID 17860 DOI: 10.1098/Rspb.1977.0048 |
0.379 |
|
1975 |
Roberts A. Mechanisms for the excitation of "free nerve endings". Nature. 253: 737-8. PMID 1113866 DOI: 10.1038/253737A0 |
0.364 |
|
1975 |
Roberts A, Blight AR. Anatomy, physiology and behavioural role of sensory nerve endings in the cement gland of embryonic Xenopus Proceedings of the Royal Society of London - Biological Sciences. 192: 111-127. PMID 1786 DOI: 10.1098/Rspb.1975.0153 |
0.422 |
|
1974 |
Roberts A, Hayes BP. A new membrane organelle in developing amphibian neurones Cell and Tissue Research. 154: 103-108. PMID 4442098 DOI: 10.1007/Bf00221074 |
0.42 |
|
1974 |
Hayes BP, Roberts A. The distribution of synapses along the spinal cord of an amphibian embryo: An electron microscope study of junction development Cell and Tissue Research. 153: 227-244. PMID 4442087 DOI: 10.1007/Bf00226611 |
0.435 |
|
1974 |
Roberts A, Smyth D. The development of a dual touch sensory system in embryos of the amphibianXenopus laevis Journal of Comparative Physiology. 88: 31-42. DOI: 10.1007/Bf00695921 |
0.41 |
|
1973 |
Hayes BP, Roberts A. Synaptic junction development in the spinal cord of an amphibian embryo: An electron microscope study Zeitschrift FüR Zellforschung Und Mikroskopische Anatomie. 137: 251-269. PMID 4348240 DOI: 10.1007/Bf00307433 |
0.389 |
|
1971 |
Roberts A. The role of propagated skin impulses in the sensory system of young tadpoles Zeitschrift F�R Vergleichende Physiologie. 75: 388-401. DOI: 10.1007/Bf00630559 |
0.333 |
|
1971 |
Roberts A, Stirling CA. The properties and propagation of a cardiac-like impulse in the skin of young tadpoles Zeitschrift F�R Vergleichende Physiologie. 71: 295-310. DOI: 10.1007/Bf00298141 |
0.332 |
|
1969 |
Roberts A. Conducted impulses in the skin of young tadpoles. Nature. 222: 1265-6. PMID 5789662 DOI: 10.1038/2221265A0 |
0.309 |
|
1968 |
Ripley SH, Bush BM, Roberts A. Crab muscle receptor which responds without impulses. Nature. 218: 1170-1. PMID 5656640 DOI: 10.1038/2181170A0 |
0.305 |
|
Show low-probability matches. |