Year |
Citation |
Score |
2020 |
McGuire KL, Hill JT, Busath DD. Increased Dissociation of Adamantanamines in Influenza A M2 S31N with Partial Block by Rimantadine. Biophysical Journal. PMID 33080223 DOI: 10.1016/j.bpj.2020.09.015 |
0.375 |
|
2020 |
Tzitzoglaki C, McGuire K, Lagarias P, Konstantinidi A, Hoffmann A, Fokina NA, Ma C, Papanastasiou IP, Schreiner PR, Vazquez S, Schmidtke M, Wang J, Busath DD, Kolocouris A. Chemical Probes for Blocking of Influenza A M2 WT and S31N Channels. Acs Chemical Biology. PMID 32786258 DOI: 10.1021/Acschembio.0C00553 |
0.313 |
|
2020 |
Banti C, Kourkoumelis N, Hatzidimitriou A, Antoniadou I, Dimou A, Rallis M, Hoffmann A, Schmidtke M, McGuire K, Busath D, Kolocouris A, Hadjikakou S. Amantadine copper(II) chloride conjugate with possible implementation in influenza virus inhibition Polyhedron. 185: 114590. DOI: 10.1016/J.Poly.2020.114590 |
0.34 |
|
2020 |
McGuire KL, Busath DD. Binding Without Block. An Analysis of Amantadine and Rimantadine Block of the Influenza M2 S31N Channel Biophysical Journal. 118: 587a. DOI: 10.1016/j.bpj.2019.11.3184 |
0.335 |
|
2015 |
Gleed ML, Ioannidis H, Kolocouris A, Busath DD. Resistance-Mutation (N31) Effects on Drug Orientation and Channel Hydration in Amantadine-Bound Influenza A M2. The Journal of Physical Chemistry. B. 119: 11548-59. PMID 26268449 DOI: 10.1021/acs.jpcb.5b05808 |
0.303 |
|
2015 |
Gleed ML, Busath DD. Why bound amantadine fails to inhibit proton conductance according to simulations of the drug-resistant influenza A M2 (S31N). The Journal of Physical Chemistry. B. 119: 1225-31. PMID 25426702 DOI: 10.1021/jp508545d |
0.332 |
|
2014 |
Wright AK, Hung I, Tzitzoglaki C, Ioannidis H, Busath DD, Kolocouris A, Cross TA. Solid-State NMR Characterization of S31N M2 Transmembrane Domain Bound to Novel Adamantanes with Persistent In Vitro Efficacy Biophysical Journal. 106: 659a. DOI: 10.1016/J.Bpj.2013.11.3651 |
0.345 |
|
2012 |
Cross TA, Dong H, Sharma M, Busath DD, Zhou HX. M2 protein from Influenza A: From multiple structures to biophysical and functional insights Current Opinion in Virology. 2: 128-133. PMID 22482709 DOI: 10.1016/J.Coviro.2012.01.005 |
0.322 |
|
2012 |
Evans CB, Busath D. Packing of Amantadine-Like Compounds in the Central Cavity of Influenza a M2 Biophysical Journal. 102: 398a. DOI: 10.1016/J.Bpj.2011.11.2176 |
0.411 |
|
2011 |
Vijayvergiya V, Robertson M, Sharma M, Cross T, Busath DD. Acid Sensitivity and Amanatadine Block of Influenza a M2 Channels in Folded Bilayers Biophysical Journal. 100: 93a-94a. DOI: 10.1016/J.Bpj.2010.12.716 |
0.323 |
|
2011 |
Can T, Miao Y, Sharma M, Luca S, Qin H, Hung I, Truong M, Busath D, Zhou H, Cross T. Solid-State NMR Study on the Conductance Mechanism and Acid Activation of M2 Proton Channel Biophysical Journal. 100: 384a. DOI: 10.1016/J.Bpj.2010.12.2283 |
0.384 |
|
2011 |
Sharma M, Yi M, Dong H, Peterson E, Qin H, Busath DD, Zhou H, Cross TA. Influenza A/M2 Proton Channel: Structure in a Lipid Bilayer Provides Insights into the Conductance Mechanism Biophysical Journal. 100: 383a. DOI: 10.1016/J.Bpj.2010.12.2282 |
0.335 |
|
2010 |
Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, Cross TA. Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer Science. 330: 509-512. PMID 20966252 DOI: 10.1126/Science.1191750 |
0.336 |
|
2010 |
Jones TL, Fu R, Nielson F, Cross TA, Busath DD. Gramicidin channels are internally gated Biophysical Journal. 98: 1486-1493. PMID 20409467 DOI: 10.1016/J.Bpj.2009.11.055 |
0.367 |
|
2010 |
Peterson E, Yi M, Zhou H, Sharma M, Cross TA, Busath D. Acid-Activation, Proton Transport Rate Saturation, and pH-Dependence of Amantadine Block for Influenza a M2 Protein Truncate (22-62) Biophysical Journal. 98: 503a. DOI: 10.1016/J.Bpj.2009.12.2739 |
0.34 |
|
2010 |
Sharma M, Yi M, Peterson E, Inouye D, Velez A, Can T, Qin H, Busath DD, Zhou H, Cross TA. Structural and Functional Studies of M2 Proton Channel From Influenza A Virus Biophysical Journal. 98: 47a-48a. DOI: 10.1016/J.Bpj.2009.12.273 |
0.367 |
|
2009 |
Mustafa M, Henderson DJ, Busath DD. Computational studies of gramicidin permeation: an entry way sulfonate enhances cation occupancy at entry sites. Biochimica Et Biophysica Acta. 1788: 1404-12. PMID 19361485 DOI: 10.1016/j.bbamem.2009.03.021 |
0.443 |
|
2009 |
Mustafa M, Henderson DJ, Busath DD. Free-energy profiles for ions in the influenza M2-TMD channel. Proteins. 76: 794-807. PMID 19296508 DOI: 10.1002/prot.22376 |
0.387 |
|
2009 |
Spohr E, Sovyak E, Trokhymchuk A, Busath DD. Electrostatic control of occupancy and valence selectivity in a charged nanometer-sized cylindrical pore Materialwissenschaft Und Werkstofftechnik. 40: 247-254. DOI: 10.1002/mawe.200900435 |
0.388 |
|
2008 |
Moffat JC, Vijayvergiya V, Gao PF, Cross TA, Woodbury DJ, Busath DD. Proton transport through influenza A virus M2 protein reconstituted in vesicles Biophysical Journal. 94: 434-445. PMID 17827230 DOI: 10.1529/Biophysj.107.109082 |
0.307 |
|
2006 |
Durrant JD, Caywood D, Busath DD. Tryptophan contributions to the empirical free-energy profile in gramicidin A/M heterodimer channels. Biophysical Journal. 91: 3230-41. PMID 16861266 DOI: 10.1529/Biophysj.105.078782 |
0.347 |
|
2006 |
Hu J, Fu R, Nishimura K, Zhang L, Zhou HX, Busath DD, Vijayvergiya V, Cross TA. Histidines, heart of the hydrogen ion channel from influenza A virus: Toward an understanding of conductance and proton selectivity Proceedings of the National Academy of Sciences of the United States of America. 103: 6865-6870. PMID 16632600 DOI: 10.1073/Pnas.0601944103 |
0.409 |
|
2005 |
Eisenberg B, Busath D, Trokhymchuk A. Douglas Henderson: From hard spheres to biological channels Condensed Matter Physics. 8: 237-240. |
0.337 |
|
2004 |
Vijayvergiya V, Wilson R, Chorak A, Gao PF, Cross TA, Busath DD. Proton conductance of influenza virus M2 protein in planar lipid bilayers Biophysical Journal. 87: 1697-1704. PMID 15345548 DOI: 10.1529/Biophysj.104.043018 |
0.322 |
|
2004 |
Ramakrishnan V, Henderson D, Busath DD. Applied field nonequilibrium molecular dynamics simulations of ion exit from a beta-barrel model of the L-type calcium channel. Biochimica Et Biophysica Acta. 1664: 1-8. PMID 15238253 DOI: 10.1016/J.Bbamem.2004.03.015 |
0.546 |
|
2004 |
Busath D, Henderson D, Sokołowski S. Density functional theory for an electrolyte in a cylinder: The selectivity of a calcium channel Journal of Physics Condensed Matter. 16. DOI: 10.1088/0953-8984/16/22/019 |
0.423 |
|
2004 |
Yang Y, Berrondo M, Henderson D, Busath D. The importance of water molecules in ion channel simulations Journal of Physics Condensed Matter. 16. DOI: 10.1088/0953-8984/16/22/013 |
0.466 |
|
2004 |
Boda D, Varga T, Henderson D, Busath DD, Nonner W, Gillespie D, Eisenberg B. Monte Carlo simulation study of a system With a dielectric boundary: Application to calcium channel selectivity Molecular Simulation. 30: 89-96. DOI: 10.1080/0892702031000152226 |
0.421 |
|
2003 |
Yang Y, Henderson D, Busath D. Applied-field molecular dynamics study of a model calcium channel selectivity filter Journal of Chemical Physics. 118: 4213-4220. DOI: 10.1063/1.1536957 |
0.433 |
|
2002 |
Cole CD, Frost AS, Thompson N, Cotten M, Cross TA, Busath DD. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents. Biophysical Journal. 83: 1974-86. PMID 12324416 DOI: 10.1016/S0006-3495(02)73959-3 |
0.331 |
|
2002 |
Ramakrishnan V, Busath DD. An inverting basket model for AE1 transport. Journal of Theoretical Biology. 215: 215-26. PMID 12051975 DOI: 10.1006/Jtbi.2001.2490 |
0.499 |
|
2002 |
Boda D, Henderson D, Busath DD. Monte Carlo study of the selectivity of calcium channels: Improved geometrical model Molecular Physics. 100: 2361-2368. DOI: 10.1080/00268970210125304 |
0.372 |
|
2002 |
Yang Y, Henderson D, Crozier P, Rowley RL, Busath DD. Permeation of ions through a model biological channel: Effect of periodic boundary conditions and cell size Molecular Physics. 100: 3011-3019. DOI: 10.1080/00268970210124774 |
0.394 |
|
2002 |
Boda D, Busath DD, Eisenberg B, Henderson D, Nonner W. Monte Carlo simulations of ion selectivity in a biological Na channel: Charge-space competition Physical Chemistry Chemical Physics. 4: 5154-5160. DOI: 10.1039/B203686J |
0.419 |
|
2002 |
Yang Y, Boda D, Henderson D, Busath D. Journal of Computational Electronics. 1: 353-357. DOI: 10.1023/A:1020795407213 |
0.462 |
|
2002 |
Boda D, Busath DD, Henderson D. Simulation of the selectivity of a calcium channel Applied Surface Science. 196: 154-156. DOI: 10.1016/S0169-4332(02)00051-X |
0.346 |
|
2001 |
Crozier PS, Henderson D, Rowley RL, Busath DD. Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics Biophysical Journal. 81: 3077-3089. PMID 11720976 DOI: 10.1016/S0006-3495(01)75946-2 |
0.388 |
|
2001 |
Anderson DG, Shirts RB, Cross TA, Busath DD. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin. Biophysical Journal. 81: 1255-64. PMID 11509342 DOI: 10.1016/S0006-3495(01)75783-9 |
0.41 |
|
2001 |
Thompson N, Thompson G, Cole CD, Cotten M, Cross TA, Busath DD. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents. Biophysical Journal. 81: 1245-54. PMID 11509341 DOI: 10.1016/S0006-3495(01)75782-7 |
0.324 |
|
2001 |
Markham JC, Gowen JA, Cross TA, Busath DD. Comparison of gramicidin A and gramicidin M channel conductance dispersities. Biochimica Et Biophysica Acta. 1513: 185-92. PMID 11470090 DOI: 10.1016/S0005-2736(01)00353-4 |
0.341 |
|
2001 |
Crozier PS, Rowley RL, Holladay NB, Henderson D, Busath DD. Molecular dynamics simulation of continuous current flow through a model biological membrane channel Physical Review Letters. 86: 2467-2470. PMID 11289956 DOI: 10.1103/Physrevlett.86.2467 |
0.398 |
|
2001 |
Boda D, Henderson D, Busath DD. Monte Carlo study of the effect of ion and channel size on the selectivity of a model calcium channel Journal of Physical Chemistry B. 105: 11574-11577. DOI: 10.1021/jp003556h |
0.421 |
|
2001 |
Henderson D, Busath DD, Rowley R. Fluids near surfaces and in pores and membrane channels Progress in Surface Science. 68: 279-295. DOI: 10.1016/S0079-6816(01)00039-9 |
0.366 |
|
2001 |
Henderson D, Busath DD, Rowley RL, Crozier PS, Boda D. Simulation study of channels in biological membranes 2001 International Conference On Computational Nanoscience - Iccn 2001. 45-48. |
0.473 |
|
2000 |
Hollerbach U, Chen DP, Busath DD, Eisenberg B. Predicting function from structure using the Poisson-Nernst-Planck equations: sodium current in the gramicidin a channel Langmuir. 16: 5509-5514. DOI: 10.1021/la991525b |
0.347 |
|
2000 |
Boda D, Busath DD, Henderson D, Sokołowski S. Monte Carlo simulations of the mechanism for channel selectivity: The competition between volume exclusion and charge neutrality Journal of Physical Chemistry B. 104: 8903-8910. |
0.43 |
|
1999 |
Phillips LR, Cole CD, Hendershot RJ, Cotten M, Cross TA, Busath DD. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophysical Journal. 77: 2492-501. PMID 20540928 DOI: 10.1016/S0006-3495(99)77085-2 |
0.368 |
|
1999 |
Cotten M, Tian C, Busath DD, Shirts RB, Cross TA. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 38: 9185-97. PMID 10413493 DOI: 10.1021/Bi982981M |
0.402 |
|
1999 |
Andersen OS, Apell HJ, Bamberg E, Busath DD, Koeppe RE, Sigworth FJ, Szabo G, Urry DW, Woolley A. Gramicidin channel controversy--the structure in a lipid environment. Nature Structural Biology. 6: 609; discussion 611-. PMID 10404209 DOI: 10.1038/10648 |
0.343 |
|
1999 |
Dorigo AE, Anderson DG, Busath DD. Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A Biophysical Journal. 76: 1897-1908. PMID 10096887 |
0.304 |
|
1998 |
Busath DD, Thulin CD, Hendershot RW, Phillips LR, Maughan P, Cole CD, Bingham NC, Morrison S, Baird LC, Hendershot RJ, Cotten M, Cross TA. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophysical Journal. 75: 2830-44. PMID 9826605 DOI: 10.1016/S0006-3495(98)77726-4 |
0.308 |
|
1997 |
Hao Y, Pear MR, Busath DD. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels Biophysical Journal. 73: 1699-1716. PMID 9336167 |
0.403 |
|
1995 |
Seoh SA, Busath D. Gramicidin tryptophans mediate formamidinium-induced channel stabilization Biophysical Journal. 68: 2271-2279. PMID 7544164 |
0.38 |
|
1993 |
Seoh SA, Busath D. The permeation properties of small organic cations in gramicidin A channels Biophysical Journal. 64: 1017-1028. PMID 7684267 |
0.371 |
|
1993 |
Busath DD. The use of physical methods in determining gramicidin channel structure and function Annual Review of Physiology. 55: 473-501. PMID 7682046 |
0.452 |
|
1993 |
Seoh SA, Busath DD. Formamidinium-induced dimer stabilization and flicker block behavior in homo- and heterodimer channels formed by gramicidin A and N-acetyl gramicidin A Biophysical Journal. 65: 1817-1827. PMID 7507714 |
0.357 |
|
1992 |
Bogusz S, Boxer A, Busath DD. An SS1-SS2 β-barrel structure for the voltage-activated potassium channel Protein Engineering, Design and Selection. 5: 285-293. PMID 1409550 DOI: 10.1093/protein/5.4.285 |
0.336 |
|
1992 |
Turano B, Pear M, Busath D. Gramicidin channel selectivity. Molecular mechanics calculations for formamidinium, guanidinium, and acetamidinium Biophysical Journal. 63: 152-161. PMID 1384733 |
0.415 |
|
1992 |
Bridal TR, Busath D. Inhibition of gramicidin channel activity by local anesthetics Bba - Biomembranes. 1107: 31-38. PMID 1377493 DOI: 10.1016/0005-2736(92)90325-G |
0.345 |
|
1991 |
Hemsley G, Busath D. Small iminium ions block gramicidin channels in lipid bilayers Biophysical Journal. 59: 901-908. PMID 1712240 |
0.411 |
|
1989 |
Roeske RW, Hrinyo-Pavlina TP, Pottorf RS, Bridal T, Jin XZ, Busath D. Synthesis and channel properties of [Tau16]gramicidin A Bba - Biomembranes. 982: 223-227. PMID 2473780 DOI: 10.1016/0005-2736(89)90058-8 |
0.37 |
|
1988 |
Busath DD, Hayon E. Ultraviolet flash photolysis of gramicidin-doped lipid bilayers Bba - Biomembranes. 944: 73-78. PMID 2458137 DOI: 10.1016/0005-2736(88)90317-3 |
0.359 |
|
1987 |
Busath DD, Andersen OS, Koeppe RE. On the conductance heterogeneity in membrane channels formed by gramicidin A. A cooperative study. Biophysical Journal. 51: 79-88. PMID 2432954 DOI: 10.1016/S0006-3495(87)83313-1 |
0.301 |
|
1984 |
Busath D, Szabo G. Atypical gramicidin a channels appear to have increased field strength at one binding site. Biophysical Journal. 45: 85-87. PMID 19431577 DOI: 10.1016/S0006-3495(84)84118-1 |
0.358 |
|
1983 |
Szabo G, Busath DD. Ion movement through membrane channels Progress in Clinical and Biological Research. 126: 297-312. PMID 6193536 |
0.344 |
|
1983 |
Busath DD, Waldbillig RC. Photolysis of gramicidin A channels in lipid bilayers Bba - Biomembranes. 736: 28-38. DOI: 10.1016/0005-2736(83)90166-9 |
0.356 |
|
1982 |
Szabo G, Busath D. Variation of ion selectivity in the gramicidin A channel Biophysical Journal. 37. |
0.385 |
|
1981 |
Begenisich T, Busath D. Sodium flux ratio in voltage-clamped squid giant axons Journal of General Physiology. 77: 489-502. PMID 6262428 |
0.325 |
|
1981 |
Busath D, Szabo G. Gramicidin forms multi-state rectifying channels Nature. 294: 371-373. PMID 6171731 DOI: 10.1038/294371a0 |
0.302 |
|
Show low-probability matches. |