Year |
Citation |
Score |
2024 |
Hiyama TY. Brain sodium sensing for regulation of thirst, salt appetite, and blood pressure. Physiological Reports. 12: e15970. PMID 38479999 DOI: 10.14814/phy2.15970 |
0.465 |
|
2020 |
Matsuda T, Hiyama TY, Kobayashi K, Kobayashi K, Noda M. Distinct CCK-positive SFO neurons are involved in persistent or transient suppression of water intake. Nature Communications. 11: 5692. PMID 33173030 DOI: 10.1038/s41467-020-19191-0 |
0.569 |
|
2020 |
Sakuta H, Lin CH, Hiyama TY, Matsuda T, Yamaguchi K, Shigenobu S, Kobayashi K, Noda M. SLC9A4 in the organum vasculosum of the lamina terminalis is a [Na] sensor for the control of water intake. Pflugers Archiv : European Journal of Physiology. PMID 32372285 DOI: 10.1007/S00424-020-02389-Y |
0.682 |
|
2019 |
Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M. [Na] Increases in Body Fluids Sensed by Central Na Induce Sympathetically Mediated Blood Pressure Elevations via H-Dependent Activation of ASIC1a. Neuron. 101: 60-75.e6. PMID 30503172 DOI: 10.1016/J.Neuron.2018.11.017 |
0.686 |
|
2017 |
Nakamura-Utsunomiya A, Hiyama TY, Okada S, Noda M, Kobayashi M. Characteristic clinical features of adipsic hypernatremia patients with subfornical organ-targeting antibody. Clinical Pediatric Endocrinology : Case Reports and Clinical Investigations : Official Journal of the Japanese Society For Pediatric Endocrinology. 26: 197-205. PMID 29026268 DOI: 10.1297/Cpe.26.197 |
0.557 |
|
2017 |
Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M. Erratum: Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nature Neuroscience. 20: 896. PMID 28542153 DOI: 10.1038/nn0617-896b |
0.515 |
|
2016 |
Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, Kobayashi K, Noda M. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nature Neuroscience. PMID 27991901 DOI: 10.1038/Nn.4463 |
0.627 |
|
2016 |
Hiyama TY, Noda M. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neuroscience Research. PMID 27521454 DOI: 10.1016/J.Neures.2016.07.007 |
0.69 |
|
2016 |
Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y. Detection of LacZ-Positive Cells in Living Tissue with Single-Cell Resolution. Angewandte Chemie (International Ed. in English). PMID 27400827 DOI: 10.1002/Anie.201603328 |
0.544 |
|
2016 |
Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH, Hara K, Kagawa R, Okada S, Kobayashi M, Mayumi I, Anzo M, Cho H, Takayasu S, Nigawara T, Daimon M, et al. Adipsic Hypernatremia without Hypothalamic Lesions Accompanied by Autoantibodies to Subfornical Organ. Brain Pathology (Zurich, Switzerland). PMID 27338632 DOI: 10.1111/Bpa.12409 |
0.575 |
|
2016 |
Sakuta H, Nishihara E, Hiyama TY, Lin CH, Noda M. Nax signaling evoked by an increase in [Na+] in CSF induces water intake via EET-mediated TRPV4 activation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. ajpregu.00352.2015. PMID 27252474 DOI: 10.1152/Ajpregu.00352.2015 |
0.638 |
|
2015 |
Matsumoto M, Hiyama TY, Kuboyama K, Suzuki R, Fujikawa A, Noda M. Channel properties of Nax expressed in neurons. Plos One. 10: e0126109. PMID 25961826 DOI: 10.1371/Journal.Pone.0126109 |
0.68 |
|
2015 |
Noda M, Hiyama TY. Sodium sensing in the brain. PflüGers Archiv : European Journal of Physiology. 467: 465-74. PMID 25491503 DOI: 10.1007/S00424-014-1662-4 |
0.712 |
|
2015 |
Noda M, Hiyama TY. The Nax Channel: What It Is and What It Does. The Neuroscientist : a Review Journal Bringing Neurobiology, Neurology and Psychiatry. 21: 399-412. PMID 24962095 DOI: 10.1177/1073858414541009 |
0.713 |
|
2014 |
Unezaki S, Katano T, Hiyama TY, Tu NH, Yoshii S, Noda M, Ito S. Involvement of Nax sodium channel in peripheral nerve regeneration via lactate signaling. The European Journal of Neuroscience. 39: 720-9. PMID 24730033 DOI: 10.1111/Ejn.12436 |
0.647 |
|
2013 |
Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, Noda M. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na(x), the brain sodium-level sensor, to suppress salt intake. Cell Metabolism. 17: 507-19. PMID 23541371 DOI: 10.1016/J.Cmet.2013.02.018 |
0.714 |
|
2012 |
Matsumoto M, Fujikawa A, Suzuki R, Shimizu H, Kuboyama K, Hiyama TY, Hall RA, Noda M. SAP97 promotes the stability of Nax channels at the plasma membrane. Febs Letters. 586: 3805-12. PMID 23022437 DOI: 10.1016/J.Febslet.2012.09.018 |
0.668 |
|
2011 |
Nishihara E, Hiyama TY, Noda M. Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. Plos One. 6: e22246. PMID 21779403 DOI: 10.1371/Journal.Pone.0022246 |
0.593 |
|
2010 |
Hiyama TY, Matsuda S, Fujikawa A, Matsumoto M, Watanabe E, Kajiwara H, Niimura F, Noda M. Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron. 66: 508-22. PMID 20510856 DOI: 10.1016/J.Neures.2010.07.1848 |
0.731 |
|
2010 |
Nagakura A, Hiyama TY, Noda M. Na(x)-deficient mice show normal vasopressin response to dehydration. Neuroscience Letters. 472: 161-5. PMID 20138121 DOI: 10.1016/J.Neulet.2010.01.077 |
0.689 |
|
2007 |
Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 54: 59-72. PMID 17408578 DOI: 10.1016/J.Neuron.2007.03.014 |
0.764 |
|
2007 |
Nagakura A, Hiyama TY, Watanabe E, Noda M. Characterization of neurons in the mouse subfornical organ by retrograde labeling Neuroscience Research. 58: S79. DOI: 10.1016/J.Neures.2007.06.1026 |
0.634 |
|
2006 |
Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 290: R568-76. PMID 16223844 DOI: 10.1152/Ajpregu.00618.2005 |
0.753 |
|
2005 |
Noda M, Hiyama TY. Sodium-level-sensitive sodium channel and salt-intake behavior. Chemical Senses. 30: i44-5. PMID 15738187 DOI: 10.1093/Chemse/Bjh105 |
0.659 |
|
2005 |
HIYAMA TY, NODA M. Na x: The Sodium Sensor in the Brain Seibutsu Butsuri. 45: 247-252. DOI: 10.2142/Biophys.45.247 |
0.654 |
|
2004 |
Hiyama TY, Watanabe E, Okado H, Noda M. The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 24: 9276-81. PMID 15496663 DOI: 10.1523/Jneurosci.2795-04.2004 |
0.762 |
|
2004 |
Kiyosue K, Hiyama TY, Nakayama K, Kasai M, Taguchi T. Re-expression of NR2B-containing NMDA receptors in vitro by suppression of neuronal activity. International Journal of Developmental Neuroscience : the Official Journal of the International Society For Developmental Neuroscience. 22: 59-65. PMID 15036380 DOI: 10.1016/J.Ijdevneu.2003.12.007 |
0.536 |
|
2003 |
Hiyama T, Watanabe E, Noda M. Nax sodium channels in the subfornical organ are essential for the control of salt-intake behavior Seibutsu Butsuri. 43: S239. DOI: 10.2142/biophys.43.S239_4 |
0.313 |
|
2002 |
Watanabe E, Hiyama TY, Kodama R, Noda M. NaX sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neuroscience Letters. 330: 109-13. PMID 12213645 DOI: 10.1016/S0304-3940(02)00708-5 |
0.739 |
|
2002 |
Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, Noda M. Na(x) channel involved in CNS sodium-level sensing. Nature Neuroscience. 5: 511-2. PMID 11992118 DOI: 10.1038/Nn0602-856 |
0.729 |
|
1998 |
Kiyosue K, Hiyama T, Kasai M, Taguchi T. Functional changes in NMDA receptors during development Neuroscience Research. 31: S86. DOI: 10.1016/S0168-0102(98)81893-2 |
0.416 |
|
Show low-probability matches. |