Year |
Citation |
Score |
2020 |
Sinakevitch I, Long SM, Gronenberg W. The central nervous system of whip spiders (Amblypygi): large mushroom bodies receive olfactory and visual input. The Journal of Comparative Neurology. PMID 32978799 DOI: 10.1002/cne.25045 |
0.354 |
|
2020 |
Sinakevitch I, Kurtzman Z, Choi HG, Ruiz Pardo DA, Dahan RA, Klein N, Bugarija B, Wendlandt E, Smith BH. Anti-RDL and Anti-mGlutR1 Receptors Antibody Testing in Honeybee Brain Sections using CRISPR-Cas9. Journal of Visualized Experiments : Jove. PMID 32065127 DOI: 10.3791/59993 |
0.312 |
|
2019 |
Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH. Experience-dependent tuning of early olfactory processing in the adult honey bee, . The Journal of Experimental Biology. PMID 31767739 DOI: 10.1242/Jeb.206748 |
0.311 |
|
2017 |
Sinakevitch IT, Daskalova SM, Smith BH. The Biogenic Amine Tyramine and its Receptor (AmTyr1) in Olfactory Neuropils in the Honey Bee (Apis mellifera) Brain. Frontiers in Systems Neuroscience. 11: 77. PMID 29114209 DOI: 10.3389/Fnsys.2017.00077 |
0.493 |
|
2017 |
Sinakevitch I, Bjorklund GR, Newbern JM, Gerkin RC, Smith BH. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. Biological Cybernetics. PMID 28852854 DOI: 10.1007/S00422-017-0728-8 |
0.401 |
|
2013 |
Sinakevitch IT, Smith AN, Locatelli F, Huerta R, Bazhenov M, Smith BH. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Frontiers in Systems Neuroscience. 7: 70. PMID 24187534 DOI: 10.3389/Fnsys.2013.00070 |
0.44 |
|
2011 |
Sinakevitch I, Mustard JA, Smith BH. Distribution of the octopamine receptor AmOA1 in the honey bee brain. Plos One. 6: e14536. PMID 21267078 DOI: 10.1371/Journal.Pone.0014536 |
0.472 |
|
2010 |
Sinakevitch I, Grau Y, Strausfeld NJ, Birman S. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Development. 5: 10. PMID 20370889 DOI: 10.1186/1749-8104-5-10 |
0.359 |
|
2009 |
Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM. Ground plan of the insect mushroom body: functional and evolutionary implications. The Journal of Comparative Neurology. 513: 265-91. PMID 19152379 DOI: 10.1002/Cne.21948 |
0.454 |
|
2008 |
Sinakevitch I, Sjöholm M, Hansson BS, Strausfeld NJ. Global and local modulatory supply to the mushroom bodies of the moth Spodoptera littoralis. Arthropod Structure & Development. 37: 260-72. PMID 18406668 DOI: 10.1016/J.Asd.2008.01.001 |
0.44 |
|
2007 |
Strausfeld NJ, Sinakevitch I, Okamura JY. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Developmental Neurobiology. 67: 1267-88. PMID 17638381 DOI: 10.1002/Dneu.20396 |
0.395 |
|
2006 |
Sjöholm M, Sinakevitch I, Strausfeld NJ, Ignell R, Hansson BS. Functional division of intrinsic neurons in the mushroom bodies of male Spodoptera littoralis revealed by antibodies against aspartate, taurine, FMRF-amide, Mas-allatotropin and DC0. Arthropod Structure & Development. 35: 153-68. PMID 18089067 DOI: 10.1016/J.Asd.2006.03.001 |
0.39 |
|
2006 |
Sinakevitch I, Strausfeld NJ. Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. The Journal of Comparative Neurology. 494: 460-75. PMID 16320256 DOI: 10.1002/Cne.20799 |
0.484 |
|
2005 |
Sjöholm M, Sinakevitch I, Ignell R, Strausfeld NJ, Hansson BS. Organization of Kenyon cells in subdivisions of the mushroom bodies of a lepidopteran insect. The Journal of Comparative Neurology. 491: 290-304. PMID 16134139 DOI: 10.1002/Cne.20698 |
0.49 |
|
2005 |
Sinakevitch I, Niwa M, Strausfeld NJ. Octopamine-like immunoreactivity in the honey bee and cockroach: comparable organization in the brain and subesophageal ganglion. The Journal of Comparative Neurology. 488: 233-54. PMID 15952163 DOI: 10.1002/Cne.20572 |
0.482 |
|
2004 |
Sinakevitch I, Strausfeld NJ. Chemical neuroanatomy of the fly's movement detection pathway. The Journal of Comparative Neurology. 468: 6-23. PMID 14648688 DOI: 10.1002/Cne.10929 |
0.365 |
|
2003 |
Farris SM, Sinakevitch I. Development and evolution of the insect mushroom bodies: towards the understanding of conserved developmental mechanisms in a higher brain center. Arthropod Structure & Development. 32: 79-101. PMID 18088997 DOI: 10.1016/S1467-8039(03)00009-4 |
0.407 |
|
2003 |
Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. The Journal of Comparative Neurology. 467: 150-72. PMID 14595766 DOI: 10.1002/Cne.10925 |
0.36 |
|
2003 |
Strausfeld NJ, Sinakevitch I, Vilinsky I. The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes. Microscopy Research and Technique. 62: 151-69. PMID 12966500 DOI: 10.1002/Jemt.10368 |
0.44 |
|
2001 |
Sinakevitch I, Farris SM, Strausfeld NJ. Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. The Journal of Comparative Neurology. 439: 352-67. PMID 11596059 DOI: 10.1002/Cne.1355 |
0.384 |
|
Show low-probability matches. |