Russell Greiner - Publications

Affiliations: 
Computing Science University of Alberta, Edmonton, Alberta, Canada 

52 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Li Y, Song Y, Sui J, Greiner R, Li XM, Greenshaw AJ, Liu YS, Cao B. Prospective prediction of anxiety onset in the Canadian longitudinal study on aging (CLSA): A machine learning study. Journal of Affective Disorders. PMID 38670463 DOI: 10.1016/j.jad.2024.04.098  0.514
2023 Song Y, Liu YS, Talarico F, Zhang Y, Hayward J, Wang M, Stroulia E, Dixon RA, Greiner R, Li X, Greenshaw A, Jie S, Cao B. Associations between differential aging and lifestyle, environment, current, and future health conditions: Findings from Canadian Longitudinal Study on Aging. Gerontology. PMID 37725932 DOI: 10.1159/000534015  0.423
2023 Song Y, Qian L, Sui J, Greiner R, Li XM, Greenshaw AJ, Liu YS, Cao B. Corrigendum to "Prediction of depression onset risk among middle-aged and elderly adults using machine learning and Canadian Longitudinal Study on Aging cohort" [J. Affect. Disord. vol. 339 (2023) page 52-57]. Journal of Affective Disorders. PMID 37684107 DOI: 10.1016/j.jad.2023.08.124  0.5
2023 Song Y, Qian L, Sui J, Greiner R, Li XM, Greenshaw AJ, Liu YS, Cao B. Prediction of depression onset risk among middle-aged and elderly adults using machine learning and Canadian Longitudinal Study on Aging cohort. Journal of Affective Disorders. PMID 37380110 DOI: 10.1016/j.jad.2023.06.031  0.468
2022 Yousefnezhad M, Zhang D, Greenshaw AJ, Greiner R. Editorial: Multi-site neuroimage analysis: Domain adaptation and batch effects. Frontiers in Neuroinformatics. 16: 994463. PMID 36120084 DOI: 10.3389/fninf.2022.994463  0.699
2022 Paul AK, Bose A, Kalmady SV, Shivakumar V, Sreeraj VS, Parlikar R, Narayanaswamy JC, Dursun SM, Greenshaw AJ, Greiner R, Venkatasubramanian G. Superior temporal gyrus functional connectivity predicts transcranial direct current stimulation response in Schizophrenia: A machine learning study. Frontiers in Psychiatry. 13: 923938. PMID 35990061 DOI: 10.3389/fpsyt.2022.923938  0.506
2022 Liu YS, Kiyang L, Hayward J, Zhang Y, Metes D, Wang M, Svenson LW, Talarico F, Chue P, Li XM, Greiner R, Greenshaw AJ, Cao B. Individualized Prospective Prediction of Opioid Use Disorder. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie. 7067437221114094. PMID 35892186 DOI: 10.1177/07067437221114094  0.5
2022 Obuobi-Donkor G, Eboreime E, Bond J, Phung N, Eyben S, Hayward J, Zhang Y, MacMaster F, Clelland S, Greiner R, Jones C, Cao B, Brémault-Phillips S, Wells K, Li XM, et al. An E-Mental Health Solution to Prevent and Manage Posttraumatic Stress Injuries Among First Responders in Alberta: Protocol for the Implementation and Evaluation of Text Messaging Services (Text4PTSI and Text4Wellbeing). Jmir Research Protocols. 11: e30680. PMID 35468094 DOI: 10.2196/30680  0.432
2022 Sawalha J, Yousefnezhad M, Shah Z, Brown MRG, Greenshaw AJ, Greiner R. Detecting Presence of PTSD Using Sentiment Analysis From Text Data. Frontiers in Psychiatry. 12: 811392. PMID 35178000 DOI: 10.3389/fpsyt.2021.811392  0.743
2021 Kalmady SV, Paul AK, Narayanaswamy JC, Agrawal R, Shivakumar V, Greenshaw AJ, Dursun SM, Greiner R, Venkatasubramanian G, Reddy YCJ. Prediction of Obsessive-Compulsive Disorder: Importance of neurobiology-aided feature design and cross-diagnosis transfer learning. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging. PMID 34929344 DOI: 10.1016/j.bpsc.2021.12.003  0.54
2021 Cao B, Liu YS, Selvitella A, Librenza-Garcia D, Passos IC, Sawalha J, Ballester P, Chen J, Dong S, Wang F, Kapczinski F, Dursun SM, Li XM, Greiner R, Greenshaw A. Differential power of placebo across major psychiatric disorders: a preliminary meta-analysis and machine learning study. Scientific Reports. 11: 21301. PMID 34716400 DOI: 10.1038/s41598-021-99534-z  0.502
2021 Sawalha J, Yousefnezhad M, Selvitella AM, Cao B, Greenshaw AJ, Greiner R. Predicting pediatric anxiety from the temporal pole using neural responses to emotional faces. Scientific Reports. 11: 16723. PMID 34408203 DOI: 10.1038/s41598-021-95987-4  0.734
2021 Benoit JRA, Dursun SM, Greiner R, Cao B, Brown MRG, Lam RW, Greenshaw AJ. Using Machine Learning to Predict Remission in Patients With Major Depressive Disorder Treated With Desvenlafaxine : Utiliser l'apprentissage machine pour prédire la rémission chez les patients souffrant de trouble dépressif majeur traités par desvenlafaxine. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie. 7067437211037141. PMID 34379019 DOI: 10.1177/07067437211037141  0.529
2021 Shalaby R, Vuong W, Hrabok M, Gusnowski A, Mrklas K, Li D, Snaterse M, Surood S, Cao B, Li XM, Greiner R, Greenshaw AJ, Agyapong VIO. COVID-19 Pandemic: Gender difference in satisfaction with a daily supportive text message program (Text4Hope) and anticipated receptivity for technology-based health support during emergencies-Cross Sectional Survey. Jmir Mhealth and Uhealth. PMID 33750738 DOI: 10.2196/24184  0.455
2021 Agyapong VIO, Shalaby R, Hrabok M, Vuong W, Noble JM, Gusnowski A, Mrklas K, Li D, Snaterse M, Surood S, Cao B, Li XM, Greiner R, Greenshaw AJ. Mental Health Outreach via Supportive Text Messages during the COVID-19 Pandemic: Improved Mental Health and Reduced Suicidal Ideation after Six Weeks in Subscribers of Text4Hope Compared to a Control Population. International Journal of Environmental Research and Public Health. 18. PMID 33672120 DOI: 10.3390/ijerph18042157  0.472
2021 Agyapong VIO, Hrabok M, Shalaby R, Vuong W, Noble JM, Gusnowski A, Mrklas K, Li D, Urichuck L, Snaterse M, Surood S, Cao B, Li XM, Greiner R, Greenshaw AJ. Text4Hope: Receiving Daily Supportive Text Messages for Three Months during the COVID-19 Pandemic Reduces Stress, Anxiety, and Depression. Disaster Medicine and Public Health Preparedness. 1-15. PMID 33551009 DOI: 10.1017/dmp.2021.27  0.451
2020 Sawalha J, Cao L, Chen J, Selvitella A, Liu Y, Yang C, Li X, Zhang X, Sun J, Zhang Y, Zhao L, Cui L, Zhang Y, Sui J, Greiner R, et al. Individualized identification of first-episode bipolar disorder using machine learning and cognitive tests. Journal of Affective Disorders. 282: 662-668. PMID 33445089 DOI: 10.1016/j.jad.2020.12.046  0.483
2020 Agyapong VIO, Hrabok M, Vuong W, Shalaby R, Noble JM, Gusnowski A, Mrklas K, Li D, Urichuk L, Snaterse M, Surood S, Cao B, Li XM, Greiner R, Greenshaw AJ. Mental Health Response to the COVID-19 Pandemic: Effectiveness of a Daily Supportive Text Message (Text4Hope) Program at Six Weeks in Reducing Stress, Anxiety, and Depression in Subscribers. Jmir Mental Health. PMID 33296330 DOI: 10.2196/22423  0.454
2020 Kalmady SV, Paul AK, Greiner R, Agrawal R, Amaresha AC, Shivakumar V, Narayanaswamy JC, Greenshaw AJ, Dursun SM, Venkatasubramanian G. Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives. Npj Schizophrenia. 6: 30. PMID 33159092 DOI: 10.1038/s41537-020-00119-y  0.495
2020 Agyapong VIO, Hrabok M, Vuong W, Gusnowski A, Shalaby R, Mrklas K, Li D, Urichuck L, Snaterse M, Surood S, Cao B, Li XM, Greiner R, Greenshaw AJ. COVID-19: Closing the Psychological Treatment Gap during the Pandemic, a Protocol for Implementation and Evaluation of Text4Hope (a Supportive Text Message Program). Jmir Research Protocols. PMID 32501805 DOI: 10.2196/19292  0.502
2020 Ghoreishiamiri R, Little G, Brown MRG, Greiner R. A simple classification framework for predicting Alzheimer’s disease from region-based grey matter volume and APOE genotype status Artificial Intelligence Research. 8: 15. DOI: 10.5430/Air.V8N2P15  0.334
2019 Kalmady SV, Greiner R, Agrawal R, Shivakumar V, Narayanaswamy JC, Brown MRG, Greenshaw AJ, Dursun SM, Venkatasubramanian G. Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. Npj Schizophrenia. 5: 2. PMID 30659193 DOI: 10.1038/s41537-018-0070-8  0.505
2019 Stirnimann G, Ebady M, Hoehn B, Simone IBD, Mazurak VC, Greiner R, Tandon P, Montano-Loza AJ. SAT-121-Predicting sarcopenia in patients with cirrhosis based on clinical and laboratory parameters using machine learning Journal of Hepatology. 70. DOI: 10.1016/S0618-8278(19)31360-X  0.338
2018 Xiao Y, Greiner R, Lewis MA. Correction to: Evaluation of machine learning methods for predicting eradication of aquatic invasive species Biological Invasions. 20: 2505-2506. DOI: 10.1007/S10530-018-1730-3  0.323
2017 Liang S, Vega R, Kong X, Deng W, Wang Q, Ma X, Li M, Hu X, Greenshaw AJ, Greiner R, Li T. Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features. Neuroscience Bulletin. PMID 29098645 DOI: 10.1007/S12264-017-0190-6  0.46
2017 Liang S, Brown MRG, Deng W, Wang Q, Ma X, Li M, Hu X, Juhas M, Li X, Greiner R, Greenshaw AJ, Li T. Convergence and divergence of neurocognitive patterns in schizophrenia and depression. Schizophrenia Research. PMID 28651909 DOI: 10.1016/J.Schres.2017.06.004  0.436
2017 Gheiratmand M, Rish I, Cecchi GA, Brown MRG, Greiner R, Polosecki PI, Bashivan P, Greenshaw AJ, Ramasubbu R, Dursun SM. Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms. Npj Schizophrenia. 3: 22. PMID 28560268 DOI: 10.1038/s41537-017-0022-8  0.485
2016 Ghiassian S, Greiner R, Jin P, Brown MR. Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. Plos One. 11: e0166934. PMID 28030565 DOI: 10.1371/Journal.Pone.0166934  0.329
2016 Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, Dursun SM, Greiner R. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage. Clinical. 12: 320-31. PMID 27551669 DOI: 10.1016/J.Nicl.2016.07.012  0.57
2016 Vega R, Sajed T, Mathewson KW, Khare K, Pilarski PM, Greiner R, Sánchez-Ante G, Antelis JM. Assessment of feature selection and classification methods for recognizing motor imagery tasks from electroencephalographic signals Artificial Intelligence Review. 6: 37-51. DOI: 10.5430/Air.V6N1P37  0.336
2014 Allen F, Pon A, Wilson M, Greiner R, Wishart D. CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Research. 42: W94-9. PMID 24895432 DOI: 10.1093/Nar/Gku436  0.313
2013 Bastani M, Vos L, Asgarian N, Deschenes J, Graham K, Mackey J, Greiner R. A machine learned classifier that uses gene expression data to accurately predict estrogen receptor status. Plos One. 8: e82144. PMID 24312637 DOI: 10.1371/Journal.Pone.0082144  0.323
2013 Eisner R, Greiner R, Tso V, Wang H, Fedorak RN. A machine-learned predictor of colonic polyps based on urinary metabolomics. Biomed Research International. 2013: 303982-303982. PMID 24307992 DOI: 10.1155/2013/303982  0.331
2013 Hajiloo M, Sapkota Y, Mackey JR, Robson P, Greiner R, Damaraju S. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction. Bmc Bioinformatics. 14: 61. PMID 23432980 DOI: 10.1186/1471-2105-14-61  0.316
2012 Sidhu GS, Asgarian N, Greiner R, Brown MR. Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Frontiers in Systems Neuroscience. 6: 74. PMID 23162439 DOI: 10.3389/Fnsys.2012.00074  0.305
2012 Brown MR, Sidhu GS, Greiner R, Asgarian N, Bastani M, Silverstone PH, Greenshaw AJ, Dursun SM. ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Frontiers in Systems Neuroscience. 6: 69. PMID 23060754 DOI: 10.3389/Fnsys.2012.00069  0.529
2011 Vaisipour S, Greiner R, Wishart D, Bastani M, Yu C. Learning predictors by integrating multiple microarray datasets F1000research. 2. DOI: 10.7490/F1000Research.1294.1  0.34
2010 Kerhet A, Small C, Quon H, Riauka T, Schrader L, Greiner R, Yee D, McEwan A, Roa W. Application of machine learning methodology for PET-based definition of lung cancer. Current Oncology (Toronto, Ont.). 17: 41-7. PMID 20179802 DOI: 10.3747/Co.V17I1.394  0.314
2010 Asgarian N, Hu X, Aktary Z, Chapman KA, Lam L, Chibbar R, Mackey J, Greiner R, Pasdar M. Learning to predict relapse in invasive ductal carcinomas based on the subcellular localization of junctional proteins. Breast Cancer Research and Treatment. 121: 527-38. PMID 19787450 DOI: 10.1007/S10549-009-0557-0  0.335
2010 Schulte O, Luo W, Greiner R. Mind change optimal learning of Bayes net structure from dependency and independency data Information and Computation. 208: 63-82. DOI: 10.1016/J.Ic.2009.03.009  0.314
2009 Su X, Khoshgoftaar TM, Greiner R. Making an accurate classifier ensemble by voting on classifications from imputed learning sets International Journal of Information and Decision Sciences. 1: 301-322. DOI: 10.1504/Ijids.2009.027657  0.337
2007 Li L, Bulitko V, Greiner R. Focus of Attention in Reinforcement Learning Journal of Universal Computer Science. 13: 1246-1269. DOI: 10.7939/R31G0Hx9N  0.323
2006 Morris M, Greiner R, Sander J, Murtha A, Schmidt MW. Learning a Classification-based Glioma Growth Model Using MRI Data Journal of Computers. 1: 21-31. DOI: 10.4304/Jcp.1.7.21-31  0.335
2006 Morris M, Greiner R, Sander J, Murtha A, Schmidt M. A classification-based glioma diffusion model using MRI data Lecture Notes in Computer Science. 98-109. DOI: 10.1007/11766247_9  0.313
2004 Szafron D, Lu P, Greiner R, Wishart DS, Poulin B, Eisner R, Lu Z, Anvik J, Macdonell C, Fyshe A, Meeuwis D. Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Research. 32: W365-71. PMID 15215412 DOI: 10.1093/Nar/Gkh485  0.313
2004 Lu Z, Szafron D, Greiner R, Lu P, Wishart DS, Poulin B, Anvik J, Macdonell C, Eisner R. Predicting subcellular localization of proteins using machine-learned classifiers Bioinformatics. 20: 547-556. PMID 14990451 DOI: 10.1093/Bioinformatics/Btg447  0.356
2002 Greiner R, Grove AJ, Roth D. Learning cost-sensitive active classifiers Artificial Intelligence. 139: 137-174. DOI: 10.1016/S0004-3702(02)00209-6  0.315
2002 Cheng J, Greiner R, Kelly J, Bell D, Liu W. Learning Bayesian networks from data: an information-theory based approach Artificial Intelligence. 137: 43-90. DOI: 10.1016/S0004-3702(02)00191-1  0.323
2001 Cheng J, Greiner R. Learning Bayesian Belief Network Classifiers: Algorithms and System Lecture Notes in Computer Science. 141-151. DOI: 10.1007/3-540-45153-6_14  0.356
1997 Greiner R, Grove AJ, Kogan A. Knowing what doesn't matter: exploiting the omission of irrelevant data Artificial Intelligence. 97: 345-380. DOI: 10.1016/S0004-3702(97)00048-9  0.304
1988 Greiner R, Silver B, Becker S, Grüninger M. A Review of Machine Learning at AAAI-87 Machine Learning. 3: 79-92. DOI: 10.1023/A:1022637632387  0.315
1988 Greiner R. Learning by understanding analogies Artificial Intelligence. 35: 81-125. DOI: 10.1016/0004-3702(88)90032-X  0.314
Show low-probability matches.