We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Zeynep M. Saygin is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2014 — 2016 |
Saygin, Zeynep |
F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
How Connectivity Determines Function in the Mature and Developing Human Brain @ Massachusetts Institute of Technology
DESCRIPTION (provided by applicant): The brain is a patchwork of regions, each specialized for a different, often very specific function. For example, some brain regions process only visual information whereas others control motor actions. Although these regions are found in the same general location across individuals, their precise location varies considerably from one person to the next. This variability is especially marked for brain regions engaged in higher-order functions such as face recognition or language. What determines the function of a given patch of cortex? A deep-rooted assumption in neuroscience is that the connectivity of a given region to the rest of the brain determines that region's function. For example, primary visual cortex is a visual region because of its input from the retina via the optic radiations. However, it is unknown whether this tight relationship between connectivity and function holds beyond primary sensory and motor regions. Here, I will use a novel method I developed in my thesis work that combines functional MRI and connectivity patterns as measured noninvasively through diffusion-weighted imaging, to answer two fundamental questions about the human brain: 1) Does the pattern of connectivity to the rest of the brain predict functionally-specific fMRI responses voxel by voxel across the cortex in individual subjects? 2) Do these connectivity patterns develop early in childhood and determine the functional specialization acquired later? Aim 1 will identify the connectivity patterns that predict the spatial profile of responses to perceptual, linguistic, and cognitive tasks in each individual's brain, thus accounting for functional specialization and individual variability in adults. Aim 2 will identify the connectivity patterns of 5 year olds that predict the functional organization of their brains two years later. As these children learn to rea, particular regions of their brains will develop specialized responses to visually-presented words. Here we ask whether the location of this specialized response is predicted by the pattern of connectivity several years earlier before they learn to read. The results of this study will characterize the relationship between structure and function in the adult human brain and will test the causal role of connectivity in shaping development of the functional specialization of the cortex. This work will provide insight into the physical mechanisms that determine neural specialization and plasticity, and in turn, individual differences in health and disease. By identifying the mechanisms underlying neural and behavioral individuality, this research will directly inform disorders of neurodevelopment as well as heterogeneity in the typical population.
|
0.915 |