We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Patrick Janulis is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2017 |
Janulis, Patrick Francis |
R21Activity Code Description: To encourage the development of new research activities in categorical program areas. (Support generally is restricted in level of support and in time.) |
Implementing and Evaluating a Machine Learning Tool For Entity Resolution in Drug Use and Sexual Contact Networks of Ymsm @ Northwestern University At Chicago
Project Summary Efforts to integrate contact network data with molecular surveillance data provide enormous promise for HIV tracking and intervention. However, the lack of tools to facilitate integrated molecular-social surveillance remains a substantial barrier to progress. For example, most contact network data only contains information on the immediate sexual and drug use partners of a single individual. Yet, the same partners can appear across the contact networks of multiple individuals. Therefore, partners must be matched across contact networks - a process called entity resolution (ER) - in order to provide an accurate view of the overall contact network structure. The process of ER currently requires either substantial resources to manually match individuals or considerable technological expertise in programming to more efficiently match individuals using probabilistic models. Accordingly, this project will 1) develop a machine learning algorithm to match individuals across personal contact networks and validate it using a large existing dataset of young men who have sex with men, and 2) create a graphical user interface to implement the algorithm as an add-on package to an existing tool for network data capture and processing (Network Canvas). The results of this project will provide an open- source and freely available tool that can drastically reduce barriers to matching individuals across contact networks, thereby providing researchers and public health officials with unencumbered access to the underlying structure of drug use and sexual networks, and a potent tool for integrating contact network data with molecular surveillance.
|
0.904 |