We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Filomene G. Morrison is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2014 — 2016 |
Morrison, Filomene |
F31Activity Code Description: To provide predoctoral individuals with supervised research training in specified health and health-related areas leading toward the research degree (e.g., Ph.D.). |
Mechanisms of Structural Plasticity Underlying Olfactory Fear Learning in Mice
DESCRIPTION (provided by applicant): Excessive fear and anxiety are the trademarks of a number of psychiatric disorders, where people with fear-related disorders are thought to over-learn a fear association and/or exhibit an inability to extinguish that fear association. Understanding the mechanisms by which sensory stimuli become associated with a traumatic experience requires understanding how the peripheral nervous system perceives the sensory stimulus and, in turn, transmits such perception to the brain. A significant amount is known regarding the molecular mechanisms underlying the processing of emotional stimuli in the central nervous system; however, very few studies have investigated the mechanisms accompanying emotional learning at the level of specific sensory modalities. The olfactory system provides a molecularly tractable system to understand the structural mechanisms underlying fear-dependent neural processes at the level of a sensory system. Our lab has used olfactory fear conditioning in M71-LacZ transgenic mice to demonstrate increased numbers of M71+ OSNs in the olfactory epithelium following olfactory fear conditioning to acetophenone, an odorant shown to specifically activate the M71 receptor. Further, this increase was directly correlated with an increase in the M71+ glomerular cross-sectional area and volume within the olfactory bulbs. At a functional level, mice exhibit enhanced freezing behavior and increased fear potentiated startle (FPS) to the conditioned odor stimulus after olfactory fear conditioning. Little is known regarding the mechanisms underlying these striking and robust functional and structural changes accompanying olfactory fear conditioning. This proposal will utilize transgenic mice, lentivirus-mediated manipulation of site-specific gene expression, behavioral assays, and immunohistochemical assays to assess cell turnover to explore mechanisms involved in the acquisition of olfactory aversive memories. This proposal will shed light on the mechanisms of olfactory fear learning acquisition at the level of the primary sensory neurons and will also investigate how BDNF-TrkB signaling contributes to behavioral and structural changes following olfactory fear learning. Understanding the changes that occur at the level of the primary olfactory sensory system will shed light on the neurobiological basis of fear related disorders such as PTSD and other anxiety disorders and will provide new insights into mechanisms of prevention of fear over-consolidation, which may lead to novel interventions following trauma exposure in clinical settings.
|
0.915 |