Charles L. Cox - US grants
Affiliations: | 2013- | Physiology | Michigan State University, East Lansing, MI |
Area:
Functional organization of thalamocortical circuitsWebsite:
https://www.msu.edu/~coxclee/Home.htmlWe are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Charles L. Cox is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2003 — 2012 | Cox, Charles Leroy | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. R56Activity Code Description: To provide limited interim research support based on the merit of a pending R01 application while applicant gathers additional data to revise a new or competing renewal application. This grant will underwrite highly meritorious applications that if given the opportunity to revise their application could meet IC recommended standards and would be missed opportunities if not funded. Interim funded ends when the applicant succeeds in obtaining an R01 or other competing award built on the R56 grant. These awards are not renewable. |
Modulation of Subcortical Visual Information Processing @ University of Illinois Urbana-Champaign ABSTRACT The dorsal lateral geniculate nucleus (dLGN) serves as the primary thalamic relay for the transfer of retinal information to primary visual cortex. In addition to sensory signaling, thalamocortical circuits are involved in alterations of behavioral states (e.g., sleep/wake, attention, arousal), and certain pathophysiological conditions such as generalized absence epilepsy. The gating properties of thalamic nuclei, including the dLGN, result from the concerted integration of the intrinsic properties of thalamic neurons, synaptic organization, activity of afferent pathways, and impinging influence of neuromodulators. Growing evidence indicates the information transfer through the dLGN is a dynamic process and not a simple relay. Our long-range goals are to understand how these different processes influence thalamocortical circuits, and ultimately gain insight into how visual information is processed. Understanding these processes in the "normal" state should provide insight to potential abnormalities that may give rise to pathological conditions that disrupt visual processing. The proposed studies will focus on two major influences that can regulate thalamocortical gating: neuropeptides and inhibitory mechanisms. The thalamus receives rich peptidergic innervation from brainstem, neocortical and thalamic neurons. During the previous grant cycle, we identified a number of peptides that significantly alter thalamic neuron excitability. In this proposal we will determine the influence of these neuropeptides (vasoactive intestinal peptide (VIP), substance P (SP), and cholecystokinin (CCK)) on synaptic transmission in thalamocortical circuits. We hypothesize that these peptides serve as endogenous neuromodulators that are released in an activity-dependent manner and ultimately produce long-lasting changes in thalamic gating. Our proposed experiments will unravel the complexity of peptidergic actions in this system, and provide an understanding on the roles of neuropeptides on thalamic gating. The second thrust of our proposal focuses on an often-overlooked component in the thalamocortical circuit, namely intrinsic inhibitory mechanisms;we will investigate the role of inhibition on sensory information processing. Thalamic interneurons are intriguing in that they give rise to traditional axonal outputs, but also have presynaptic dendrites that spatially overlap with retinal inputs onto dLGN relay neurons. We can selectively manipulate the output of these presynaptic dendrites;however, their influences on retinogeniculate transmission are poorly understood. We will test our hypothesis that the presynaptic dendrites are stimulated in an activity-dependent manner and thus engage inhibitory mechanisms that would extend the dynamic range of retinal inputs in which thalamocortical neurons can respond to retinal input. In addition, we speculate that dendritic output of interneurons occur independent of somatic activity and thus, would serve as focal inhibitory influences, which would contrast with a distributed "global" influence of axonal outputs. Considering the integral role of inhibition in the regulation of neuronal excitability, and the potential long-lasting modulatory actions of neuropeptides on neuronal excitability, our findings will provide novel insights regarding the dynamics of thalamic gating. |
1 |
2010 — 2015 | Cox, Charles Leroy | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Synaptic Phenotype, Development, and Plasticity in the Fragile X Mouse @ University of Illinois Urbana-Champaign DESCRIPTION (provided by applicant): Fragile X Syndrome (FXS), the leading cause of inherited mental retardation and the largest identified genetic basis for autism spectrum disorders, results from the lack of functional FMRP. One of the major anatomical phenotypes of the disorder is an alteration in the number and shape of dendritic spines, through which neurons communicate. This synaptic phenotype is seen both in human patients and in the mouse model of FXS. In typical individuals, the production and selective removal (pruning) of these connections gives rise to the development of an organized brain-wiring diagram that is guided by experience and learning. Interestingly, abnormal dendritic spines have been found in most forms of mental retardation, including Rett's and Down's syndrome, as well as many other neurological conditions involving altered cognition. This finding suggests that either altered spines indicate an underlying connection failure, or alternatively, could themselves cause mental deficiencies, and evidence for both possibilities exists. Thus, there is enormous interest in understanding how spine abnormalities develop, whether they can be treated, and how they relate to the cognitive disturbances that they seem to embody. Since FXS is caused by the loss of function of a single gene, the mouse model is a powerful system with which to begin answering these questions. This project seeks to determine the underlying dynamics and structure of synaptic connections in FXS, and how they arise during development. By monitoring synapses in living animals using 2-photon microscopy, we will be able to 1) determine the ontogeny and dynamic processes that leads to synaptic abnormalities seen in FXS, and 2) assess the capacity for plasticity and potential for reversal of this system through intervention. Model therapeutic treatments proposed include AAV-virus mediated restoration of FMRP expression, as well as drug treatments including Lithium and specific metabotropic glutamate receptor antagonists. By reintroducing FMRP in both the adult and developing animal (through viral restoration), and comparing our findings with nearly ideal restoration using a genetic conditional knockON model, we will be able to determine how and when the phenotype arises and to what extent dynamic and structural phenotypes can be restored. Understanding the timing of FMRP's involvement will have significant implications for the development of treatments for FXS individuals, many of whom are not diagnosed until they have already missed important developmental milestones. On the other hand, determining the dynamic pattern of changes in spines after FMRP restoration (only possible by in vivo imaging) will have implications for comparing pharmacological and viral-mediated treatments, each of which may alter dendritic spines in different ways. Elucidating the basic mechanisms of neural development and plasticity is essential, not only for understanding the roles of FMRP but also for other disorders of the synapse that are likely to share similar fundamental mechanisms. PUBLIC HEALTH RELEVANCE: Fragile X syndrome (FXS) is the most common form of inherited mental retardation and one of the main identified genetic causes of autism spectrum disorder. This proposal investigates neuronal development in a mouse model of FXS by imaging dendritic spines, critical components of the connection between neurons, in order to determine if model interventions are capable of restoring function to this system after birth. Ultimately, we are asking how abnormalities in spine morphology, found in the majority of causes of mental retardation, relate to behavioral function and cognition. |
1 |