We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Adrian Daw is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2008 — 2011 |
Daw, Adrian Saken, Jon |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Collaborative Research: Eclipse Observations of Heavy Ions, Neutrals and Dust Grains in the Solar Corona @ Appalachian State University
The Principal Investigator (PI) and her collaborators will take multi-spectral observations during several upcoming solar eclipses in order to map the ion abundance, electron temperature, and direction of the coronal magnetic field in the inner corona. The team plans to study the distribution of neutral hydrogen and helium in the solar corona, as well as to investigate the properties of dust grains in the near-Sun environment. Data will be obtained in the spectral lines of ionized iron, sulfur, and silicon, as well as in neutral helium and hydrogen. Coupled with laboratory experiments, these observations will enable detection of fluorescence signatures of interplanetary dust grains present in the solar corona.
This project will exploit the complementary diagnostic techniques of resonant scattering and polarization to follow the evolution of ions and neutrals in the solar corona. Heavy ions and traces of lighter neutral atoms (such as hydrogen and helium) in the inner corona serve as local probes of the physical processes that heat the solar atmosphere to over one million degrees and accelerate the solar wind. While ions are tied to coronal magnetic fields, neutrals reflect the fate of cooler material from solar as well as interstellar origin. As ions and neutrals expand away from the Sun, they interact and evolve under the influence of the local magnetic field, the local electron temperature, and through collisions. This research will enhance our understanding of these phenomena.
In previous eclipse expeditions, members of the research team have been successful in raising public awareness of scientific research in general and of solar physics in particular. Their prior efforts have proved to be engaging for the imagination and intellect of younger students specifically. The research team represents a fruitful collaboration involving small and large universities led by a senior female scientist. The eclipse expeditions will involve graduate students, postdoctoral fellows, and a K-12 teacher, with an emphasis on education.
|
1 |