Nicholas A. Frost - US grants
Affiliations: | Physiology | University of Maryland School of Medicine, Baltimore, MD, United States |
Area:
NeuroscienceWe are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Nicholas A. Frost is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2009 — 2011 | Frost, Nicholas Alonzo | F30Activity Code Description: Individual fellowships for predoctoral training which leads to the combined M.D./Ph.D. degrees. |
Regulation of Actin Dynamics At Functional Subdomains Within Dendritic Spines @ University of Maryland Baltimore DESCRIPTION (provided by applicant): Dendritic spines house the postsynaptic components of excitatory synapses in the brain. Synapses are inherently plastic, and dendritic spines represent an important locus for maintenance and modification of synaptic strength which is thought to underlie behavioral learning and developmental plasticity. Increasing evidence exists that spines contain within them interlinked sets of functional subdomains. Most notable of these is the postsynaptic density, the molecular machine which positions and regulates the number of postsynaptic neurotransmitter receptors. In addition, spines contain an endocytic zone positioned in the spine membrane substantially away from the synapse. The synaptic dysfunction underlying many neurological disorders is associated with impairment of processes occurring at these functional subdomains. Importantly, a number of these processes require ongoing actin polymerization. Dynamic regulation of the actin cytoskeleton within spines is necessary for spine morphological plasticity as well as maintenance of synaptic composition and function, and underlies the insertion, stabilization, and endocytosis of neurotransmitter receptors at the synapse. Changes in actin polymerization and stability within spines accompany and are required for the induction of long term potentiation and other forms of synaptic plasticity. However, little is known about the sites within spines at which actin rearrangement is specifically required for alterations in synaptic strength to be initiated and maintained. I propose that ongoing and independent regulation of actin polymerization occurs at spine subdomains such as the postsynaptic density and endocytic zone. My proposed experiments will test this hypothesis by measuring actin polymerization and movement within individual, live dendritic spines using confocal, super-resolution, and single-particle techniques, and utilizing fluorescent protein-tagged molecules to mark the postsynaptic density (PSD) and endocytic zones. Using these assays, I will then test a widely proposed mechanism that the PSD interacts with the actin cytoskeleton via the protein cortactin, and examine how the organization of actin is altered within spines during induction of LTP. These results will provide fundamental new information about cytoskeletal organization and regulation within individual dendritic spines, critical for understanding the involvement of spine actin dysregulation in disease. |
0.972 |
2018 — 2021 | Frost, Nicholas Alonzo | K08Activity Code Description: To provide the opportunity for promising medical scientists with demonstrated aptitude to develop into independent investigators, or for faculty members to pursue research aspects of categorical areas applicable to the awarding unit, and aid in filling the academic faculty gap in these shortage areas within health profession's institutions of the country. |
Abnormal Prefrontal Network Structure Underlying Anxiety in Autism @ University of California, San Francisco Project Summary Autism is a pervasive developmental disorder caused by heterogeneous insults at the cellular or molecular level affecting the function of distributed brain regions. Co-morbid anxiety and other psychiatric disorders are common, likely due to underlying mechanisms shared with core features of autism. Loss of the postsynaptic density protein Shank3 is associated with deficits in synapses at the molecular level, as well as autism and intellectual disability. Autism is associated with changes in prefrontal circuit function which likely impede the spatial and temporal patterning of neuronal ensemble activity, degrading the precision with which the prefrontal cortex responds to input. I propose to test the hypothesis that abnormal recruitment of prefrontal activity in response to vHPC input during anxiety contributes to abnormal anxiety in the Shank3 knockout (KO) mouse. I will first define the specificity with which ensemble activation occurs in response to vHPC input within prefrontal microcircuits, and determine the degree to which ensemble recruitment is altered in mice lacking Shank3. These mice are abnormally anxious and have abnormal social interaction. I have demonstrated that network organization in prefrontal slices from KO mice is abnormal; individual neurons are more active, and the organization of ensemble activity also abnormal. Specifically, pairwise correlations are abnormally high and the KO generates abnormal patterns of activity. I quantified the patterns of activity sampled by the network by counting the number of specific n-neuron motifs consisting of combinations of 2,3,4, or 5 neurons. This revealed that the KO samples a greater number of patterns, but patterns sampled are less likely to occur more frequently than in shuffled data. This suggests that while the KO samples more diverse modes of activity, it does so in a disorganized manner. This may increase noise or decrease the precision of ensemble recruitment during behavior. I propose to test how these changes in network activity affect how the PFC responds to anxiogenic input using optogenetic stimulation of defined inputs from the ventral hippocampus to examine neuronal ensembles recruited in response to specified input (Aim 1). I will then use implanted microendoscopes to explore the precision with which distinct ensembles of neurons are recruited during anxiety-related behavior (Aim 2) in the intact animal, and the precision with which anxiogenic input from the ventral hippocampus results in activation of PFC projections to the amygdala (Aim 3). These studies are of immediate relevance to autism, as despite a dramatic increase in our knowledge of genetic and cellular pathology underlying autism there remains a paucity of therapeutic options. This mentored award will provide the opportunity to develop technical skills and quantitative methods needed for the analysis of large, dynamic populations of neurons. I will be mentored by Dr. Vikaas Sohal, a clinician-scientist and an expert in optogenetics, neuropsychiatric and developmental disorders. I intend to submit an R01 and transition to the role of independent investigator by the end of this award. |
0.942 |