Anna Francesconi, PhD - US grants
Affiliations: | Albert Einstein College of Medicine, New York, New York, United States |
Area:
mGluR traffickingWe are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Anna Francesconi is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2009 — 2013 | Francesconi, Anna | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Regulation of Metabotropic Glutamate Receptor Signaling by Caveolar Rafts @ Albert Einstein College of Medicine DESCRIPTION (provided by applicant): mGluRs are G protein-coupled receptors enriched at excitatory synapses throughout the brain where they act both pre- and postsynaptically to regulate glutamatergic neurotransmission. Signaling by mGluRs is critical to synaptic circuitry formation during development and is implicated in forms of activity-dependent synaptic plasticity. Dysregulation of mGluR signaling is implicated in many neurological and psychiatric disorders linked to abnormal development, including Fragile X syndrome, the most common inherited form of mental retardation, epilepsy, schizophrenia, and addiction. The overall objective of this proposal is to understand the molecular mechanisms underlying the regulation of mGluR signaling by association with a key scaffolding protein in the brain. Preliminary evidence indicates that postsynaptic group I mGluRs (mGluR1/5) bind caveolin-1 and associate with membrane rafts. Caveolin-1, the main structural component of caveolae, acts as a molecular scaffold for a large number of signaling effector proteins and membrane receptors. Lipid rafts and caveolae are specialized membrane microdomains that serve as platforms to compartmentalize signaling activities at the cell surface. The hypothesis underlying the proposed studies is that association with caveolin-1 and membrane rafts regulates mGluR-dependent signal transduction. This proposal builds on our initial observations by pursuing the following Specific Aims: 1) Assess the role of caveolin-1 in the regulation of mGluR1/5-dependent changes in synapse composition. Experiments will examine the impact of caveolin-1 on 1) mGluR1/5-induced internalization of AMPA receptors;2) mGluR1/5-induced local synthesis of proteins critical for synaptic plasticity;and 3) mGluR1/5-induced activation of transcription factors involved in memory storage. 2) Determine whether association with membrane rafts and caveolin-1 regulates mGluR signaling to effector proteins. Experiments will examine the association of mGluRs with signaling proteins in rafts vs. non-raft membrane domains and the role of caveolin-1 in regulating mGluR signaling to the PLC/InsP3/Ca2+ and ERK-MAPK pathways. Collectively, these studies will provide important insights not only into the regulation of mGluR signaling but also into mechanisms relevant to the establishment and maintenance of neuronal circuitry under physiological and pathological conditions, including inherited forms of mental retardation such as Fragile X syndrome. PUBLIC HEALTH RELEVANCE: mGluRs are G protein-coupled receptors enriched at excitatory synapses throughout the brain where they act both pre- and postsynaptically to regulate glutamatergic neurotransmission;signaling by mGluRs is critical to synaptic circuitry formation during development and is implicated in forms of activity-dependent synaptic plasticity. The overall objective of this proposal is to understand the molecular mechanisms underlying the regulation of mGluR signaling by association with a key scaffolding protein in the brain;these studies will provide insights into mechanisms relevant to the establishment and maintenance of neuronal circuitry under physiological and pathological conditions. |
1 |
2016 — 2020 | Francesconi, Anna | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Metabotropic Glutamate Receptor Functions in Autophagy @ Albert Einstein College of Medicine, Inc Abnormal maturation of brain circuitry during development is a critical determinant of pathological manifestations in neuropsychiatric conditions including intellectual disability, Fragile X syndrome and schizophrenia. A growing body of evidence from studies in human subjects and animal models has established a link between dysfunctions in glutamatergic neurotransmission and developmental brain abnormalities associated with these conditions. Group I metabotropic glutamate receptors, mGlu1 and mGlu5, are G protein- coupled receptors critical to formation and maintenance of brain circuitry and synaptic plasticity, a cellular substrate of learning and memory. Dysregulation of group I mGluR activity is implicated in neurodevelopmental disorders including Fragile X syndrome and schizophrenia. The broad spectrum of deficits linked to group I mGluR dysfunctions is not adequately explained by existing knowledge of receptor properties. We identified a new mGlu1-interacting protein, fasciculation and elongation protein zeta-1 (FEZ1) encoded by a schizophrenia candidate gene. Preliminary findings indicate that mGlu1 may function via FEZ1 to regulate autophagy in neurons. Autophagy is an evolutionarily conserved catabolic process critical to neuronal homeostasis and brain development. The proposed studies build on this progress to elucidate a fundamentally new mechanism by which group I mGluRs can contribute to regulation of neuronal homeostasis under physiopathological conditions. We propose to 1) determine the cellular mechanisms by which group I mGluRs regulate autophagy in neurons; 2) define the molecular pathways by which the receptors control autophagy initiation; 3) establish whether constitutively enhanced group I mGluR activity leads to autophagy impairment in an animal model of Fragile X syndrome; and 4) investigate the function of autophagy in group I mGluR-dependent remodeling of dendritic spines. Collectively, findings from these studies will significantly advance our understanding of the molecular and cellular substrates underlying metabotropic functions in the brain and build a molecular framework to understand cellular perturbations associated with synaptic pathologies in neurodevelopmental disorders. |
1 |