2011 — 2012 |
Behringer, Erik Josef |
F32Activity Code Description: To provide postdoctoral research training to individuals to broaden their scientific background and extend their potential for research in specified health-related areas. |
Regulation of Conducted Hyperpolarization in Microvascular Endothelial Cell Tubes @ University of Missouri-Columbia
DESCRIPTION (provided by applicant): Regulation of conducted hyperpolarization in microvascular endothelial cell tubes Project Summary Endothelial cells (ECs) provide the predominant cellular pathway for conducted hyperpolarization (CHP) through gap junctions (GJs) along arterioles and feed arteries. Myoendothelial coupling transmits this hyperpolarization to consecutive smooth muscle cells (SMCs) along the vessel, resulting in conducted vasodilation (CVD) and increased tissue blood flow. Resolving signaling events that translate into the control of tissue blood flow (with an emphasis on skeletal muscle) underscores the research focus of our laboratory. My working model of CVD is that EC hyperpolarization (e.g., in response to acetylcholine, ACh) reflects a local rise in calcium ([Ca2+]i) which activates small- and intermediate-conductance Ca2+-activated K+ channels (IKCa/SKCa) to initiate hyperpolarizing current that flows through GJs to promote vasodilation. Due to their prominent role in EC signaling, IKCa/SKCa may play an important role in regulating current flow along the endothelium. For example, with no change in GJ coupling between cells, opening IKCa/SKCa (i.e., lowering membrane resistance) should increase current 'leak'along the endothelium and thereby reduce the amplitude and effective distance of conducted hyperpolarization (CHP). In C57BL/6 mice, our laboratory has shown that CVD declines with aging;however, the role of IKCa/SKCa in this functional defect has not been investigated. Thus, the Specific Aims of this proposal are (1) to determine the role of IKCa/SKCa in governing CHP;and (2) to investigate how changes in IKCa/SKCa function may reduce CHP with aging and thereby compromise tissue blood flow. To investigate these functional interactions in the resistance vasculature, I have developed a novel preparation of intact microvascular endothelial cell tubes isolated from mouse abdominal muscle feed arteries in which individual ECs (length, ~35 5m;width, ~5 5m) remain highly coupled to each other following microdissection and enzymatic dissociation of SMCs. My experimental design uses two sharp (intracellular) microelectrodes to simultaneously inject current (+/- 0.1 to 5 nA) and measure membrane potential (Vm) in ECs located at Site 1 and at Site 2, respectively, which are separated by well-defined distances (50-2000 5m). My preliminary data illustrate robust intercellular electrical coupling along entire tubes with dye transfer between multiple ECs following microinjection into a single EC. Remarkably, the IKCa/SKCa opener (NS309, 1 5M) or ACh (3 5M) attenuated CHP (to -1 nA current, 500 5m separation between electrodes). Thus, I am now able to study key electrical signaling events which are intrinsic to the native endothelium of resistance microvessels without the prevailing influence of SMCs or blood flow, both of which influence EC function. My long term goal is to apply the findings of my research towards novel therapeutic strategies for treating cardiovascular disease, particularly in light of endothelial dysfunction increasingly recognized to afflict aging Americans. PUBLIC HEALTH RELEVANCE: In the microcirculation, endothelial cells play a key role in relaxing smooth muscle cells to produce vasodilation and increase tissue blood flow, e.g. to skeletal muscle during physical activity. These processes are attenuated with aging through mechanisms that are poorly understood. This research project is focused on understanding the mechanisms of electrical signaling between endothelial cells that coordinate vasodilation and how these mechanisms are altered during aging.
|
0.948 |
2014 — 2017 |
Behringer, Erik Josef |
K99Activity Code Description: To support the initial phase of a Career/Research Transition award program that provides 1-2 years of mentored support for highly motivated, advanced postdoctoral research scientists. R00Activity Code Description: To support the second phase of a Career/Research Transition award program that provides 1 -3 years of independent research support (R00) contingent on securing an independent research position. Award recipients will be expected to compete successfully for independent R01 support from the NIH during the R00 research transition award period. |
Impact of Aging On Calcium and Electrical Signaling in Microvascular Endothelium @ University of Missouri-Columbia
DESCRIPTION (provided by applicant): The number of Americans 65 years and older is expected to increase to ~20% (1 in 5) from the current ~13% (1 in 8) over the next two decades. Scientific research efforts for resolving aging physiology constitute an effective approach towards understanding, treating and preventing the development of cardiovascular disease; the number one killer of American citizens and culprit for diminishing quality of human life. Aging is associated with under-perfusion of vital tissues and organs with an integral role for vascular endothelial dysfunction. In resistance arteries that control blood flow into the microcirculation, the interaction of Ca2+ and electrical signaling pathways underlying endothelium-dependent vasodilation involves endothelium-derived hyperpolarization (EDH). Functional relationships support the initiation [e.g., activation of small- and intermediate-calcium-activated K+ channels (SKCa/IKCa)] and spread (via gap junctions) of hyperpolarization along and among the endothelium of network branches as a highly effective mechanism for coordinating tissue perfusion (i.e., oxygen delivery) with the metabolic demand of tissue parenchymal cells. Whereas aging is associated with oxidative stress (e.g., hydrogen peroxide production by mitochondria), there is a paucity of aging research concerned with EDH in the context of endothelial dysfunction underlying impaired tissue perfusion. Therefore, the goal of this project is to determine how mitochondrial-derived oxidative stress during aging interacts with endothelial cell Ca2+ and electrical signaling pathways that govern vasodilation and functional hyperemia. I will test the central hypothesis that the interaction of mitochondrial-derived Ca2+ and oxidative stress alter electrical signaling in the endothelium of microvascular resistance arteries. To investigate these relationships, I will employ a novel preparation of intact microvascular endothelial tubes, whereby freshly-dissected superior epigastric arteries of mouse abdominal skeletal muscle are treated to remove smooth muscle cells, adventitia, perivascular nerves and blood flow. Using intact endothelial tubes (length: ~3 mm, width: ~60 ?m) isolated from of Young (4-6 month), Intermediate (12-14 month), and Old (24- 26 month) C57BL/6 mice, I will employ simultaneous optical measurements of key signaling events (e.g., intracellular Ca2+ and H2O2 production) with intracellular recordings of membrane potential (Vm). Aim 1 will determine the mechanism by which oxidative stress alters endothelial Vm via activation of (SKCa/IKCa) with advancing age. Aim 2 will determine the role of mitochondria in Ca2+ buffering to impact (SKCa/IKCa) for ensuing hyperpolarization with advancing age. Aim 3 will determine mitochondrial production of reactive oxygen species and evaluate its role governing Vm in old age. This project will uniquely determine the role of mitochondrial handling of Ca2+ and oxidative stress signals in native intact microvascular endothelium. Results from this project will provide critical new insight towards developing therapeutic strategies for reversing endothelial dysfunction to promote tissue blood flow and sustain the quality of life during aging.
|
1 |