Sean Deoni - US grants
Affiliations: | Brown University, Providence, RI |
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the NIH Research Portfolio Online Reporting Tools and the NSF Award Database.The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please sign in and mark grants as correct or incorrect matches.
High-probability grants
According to our matching algorithm, Sean Deoni is the likely recipient of the following grants.Years | Recipients | Code | Title / Keywords | Matching score |
---|---|---|---|---|
2009 — 2013 | Deoni, Sean Cl | R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Imaging White Matter Maturation During Healthy Brain Development @ Brown University DESCRIPTION (provided by applicant): Abnormal brain maturation is believed to contribute to the path physiology and etiology of a number of mental health and psychiatric disorders, amongst them autism, schizophrenia, attention deficit and obsessive-compulsive disorder. A critical component of brain maturation is the process of myelination, the development of the fatty myelin layer surrounding white matter axons, which speeds information transfer between discrete brain regions. Despite the crucial role myelination plays in normal brain function, though the establishment and maintenance of these efficient communication pathways;to date little is known quantitatively about the spatial and temporal evolution of myelination. Moreover, the relationships between myelin maturation and cognitive and behavioral development, for example the evolution of motor coordination, language or visual reception, remain poorly understood. This proposal aims to address both of these deficiencies in knowledge, performing the first quantitative and longitudinal study of myelination during healthy neurodevelopment. Paired with synchronized cognitive and behavioral assessments, this data will provide a new vista of normal brain development. This normative dataset will be uniquely positioned to facilitate specific quantitative comparisons between healthy and suspected abnormal development, allowing researchers to identify and establish the spatial and temporal patterns of relevant deficits. The ultimate goals of this research are to quantitatively map the myelination trajectory over the first 5 years of life in a healthy population, and to examine relationships between myelin maturation and cognitive and behavioral development. To achieve this aim, a new method for quantitative myelin imaging, termed mcDESPOT, will first be further develop and optimized for use in pediatric participants. Using this optimized technique, myelin maturation trajectories throughout the brain will be reconstructed by acquiring high-spatial resolution, whole-brain myelin maps at incremented time points throughout development. Following 128 infants (3-24 months of age) and 128 toddlers (2-5 years), scanning and age-appropriate psychometric testing will be performed at effective 3 and 6- month intervals, respectively. Appropriately aligned, this data will result in the creation of 14 age-specific averaged myelin maps, providing the first quantitative description of myelin maturation in vivo. Relationships between these myelin measures and cognition will be investigated through comparison with the cognitive assessments of motor coordination, language and visual reception, providing new insight into how the brain normally develops and which brain regions are involved at each stage. |
0.958 |
2012 — 2017 | Deoni, Sean Cl Erickson-Owens, Debra Ann (co-PI) [⬀] Mercer, Judith Smith [⬀] Padbury, James F (co-PI) [⬀] |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Effects of Placental Transfusion On Early Brain Development @ University of Rhode Island DESCRIPTION (provided by applicant): The current obstetrical practice at birth in the United States is that the umbilical cord of the infant is clamped immediately. When immediate clamping occurs, 20 to 40% of the fetal-placental blood volume is left behind in the placenta. This blood contains enough iron-rich red blood cells to meet the infant's iron needs for the first 4 to 6 months of life. Delaying cord clamping has been shown to increase early iron stores without contributing to adverse outcomes. Early iron sufficiency is essential for long term neurologic health. Iron deficiency in infancy adversely affects cognitive, motor, socio-emotional, and behavioral development. Human and animal studies have shown that inadequate iron stores in early infancy have an irreversible negative impact on the developing brain with deficits persisting even after iron levels have been restored by iron supplementation. Iron is an essential component of myelination which is critical for normal brain development and function. Myelination, which peaks during the first year of life, establishes and maintains efficient communication between the discrete regions of the brain. Abnormal myelination underlies a variety of childhood developmental disorders including conditions such as autism. The gap is that the effect of increased iron stores from delayed cord clamping on myelination and neurodevelopment during early childhood is unknown. Our hypothesis is that placental transfusion affects myelination and early childhood development in the following ways: 1) placental transfusions lead to increased blood volume (BV) and red cell volume (RCV) at birth; 2) increased RCV results in more available iron for early body iron stores; 3) increased body iron stores provide essential iron supply for optimal myelination; 4) optimal myelination results i improved developmental and cognitive performance. We propose a randomized controlled longitudinal (birth to 24 months) trial of 128 infants to measure the effect of placental transfusin on the structure and function of the developing brain. We will use a non-invasive neuroimaging technique to measure myelin acquisition over time and to correlate the findings with iron stores and developmental outcomes. Enrolled women will be randomized at birth to the immediate cord clamping group or the delayed cord clamping group. We will assess infants for iron sufficiency and myelin deposition at 4 and 10 months and evaluate developmental outcomes at 4, 10, and 24 months. This study will help to establish a scientific basis for the timing of cord clamping with reference to brain development. The innovation of this study is in the simplicity of delaying cord clamping combined with the use of a new method of MRI that can quantify myelin deposition. This low-tech change in a clinical practice has the potential to reduce iron deficiency and improve developmental outcomes. If delayed cord clamping demonstrates protective effects for optimal development, changing practice will translate into a large cost savings improving lifetime productivity beneficial to society as a whole. PUBLIC HEALTH RELEVANCE: The current obstetrical practice at birth in the United States is that the umbilical cord of the infant is clamped immediately affecting over 4 million infants annually. A brief delay in cord clamping results in increased iron stores for the infant who has the potential to prevent early iron deficiency and result in improved neurodevelopmental outcomes due to better myelination. If delayed cord clamping demonstrates protective effects for optimal development, changing practice will translate into a large cost savings improving lifetime productivity beneficial to society as a whole. |
0.923 |