2006 — 2007 |
Zhang, Dao-Qi |
R03Activity Code Description: To provide research support specifically limited in time and amount for studies in categorical program areas. Small grants provide flexibility for initiating studies which are generally for preliminary short-term projects and are non-renewable. |
Electrical Synapses of Horizontal Cells
[unreadable] DESCRIPTION (provided by applicant): Neuronal networks formed by retinal electrical synapses, or gap junctions, are of physiological importance for visual information processing. Horizontal cells (HCs), second-order interneurons, are electrically coupled through gap junctions to form a dense neuronal network that mediates the antagonistic center-surround organization of bipolar and ganglion cell receptive fields. Modulation of HC gap junctions underlies adaptive changes in the function of retinal neuronal networks to different levels of illumination. Dopamine is one of the gap junction neuromodulators that significantly alters HC networks during light adaptation. Overall, HCs are an excellent model system to study the functional aspects of electrical coupling and neuronal network plasticity. The long-term goal of my research is to understand the role of HC electrical synapses in retinal plasticity and visual information processing. The retinal degeneration (rd) mouse that lacks rods and cones is an advantageous model for investigation of electrophysiological properties of mammalian HC electrical synapses. The use of flat-mount rd retinas permits HCs to be readily approached for recording. I have combined this technique with the dual whole-cell patch-clamp technique to demonstrate the feasibility of obtaining electrophysiological recordings of currents through HC gap junctions. These techniques can be utilized to achieve the following specific aims: Specific Aim 1: Characterization of electrophysiological properties of HC electrical synapses. Specifically, I will (1) measure gap junction conductance and coupling coefficient of HC electrical coupling; (2) determine whether carbenoxolone and intracellular H+ affect HC electrical synapses; (3) test whether HC electrical synapses function as a low-pass filter. Specific Aim 2: Modulation of HC electrical synapses by dopamine. Specifically, I will (1) characterize regulation of HC gap junctions by exogenous and endogenous dopamine; (2) determine the cellular mechanism of dopamine on HC electrical, synapses. These studies will greatly advance our understanding of the function and plasticity of retinal neuronal networks during light/dark adaptation and our understanding of retinal functional modification during photoreceptor degeneration. [unreadable] [unreadable]
|
0.958 |
2014 — 2018 |
Zhang, Dao-Qi |
R01Activity Code Description: To support a discrete, specified, circumscribed project to be performed by the named investigator(s) in an area representing his or her specific interest and competencies. |
Functional Organization of the Retinal Dopaminergic Network
DESCRIPTION (provided by applicant): Dopaminergic neurons are widely distributed throughout the CNS and play vital roles in sensory functions, motor control, cognition, and motivation. The most accessible dopaminergic neurons of the CNS are located in the vertebrate retina. These neurons are a specialized subpopulation of amacrine cells that play critical roles in modulating retinal circuits, synchronizing the retinal clock, and influencing eye growth. Dopaminergic amacrine neurons are regulated by several factors including light; however, mechanisms involved are mostly unknown. The long-term goal of the proposed study is to understand the mechanisms by which dopaminergic amacrine neurons are regulated by light. We have developed novel strategies and reagents to achieve this goal. Our published studies have revealed that dopaminergic amacrine neurons comprise at least two functional subtypes, transient and sustained responders, which appear to be tuned to distinct aspects of environmental light. In this application, we will extend our previous studies by addressing four specific aims. Aim 1 will test the hypothesis that dopaminergic amacrine neurons are depolarized with persistent increased activity by rods through distinct neural pathways. In Aim 2, we will test the hypothesis that cone-driven dopaminergic amacrine neurons comprise two distinct morphological and functional subtypes (transient ON and ON-OFF). Aim 3 will determine the morphology of sustained dopaminergic amacrine neurons driven by the melanopsin-expressing intrinsically photosensitive retinal ganglion cells and the mechanisms of glutamatergic transmission from the intrinsically photosensitive retinal ganglion cells to dopaminergic amacrine neurons. In Aim 4, we will define the relative contributions of rod, cone, and melanopsin signaling to dopaminergic amacrine neurons across a wide range of light intensities. Successful completion of these aims will provide novel information regarding dopaminergic amacrine neuron subtypes, each subtype's light response characteristics, the neural pathways conveying photosensitive cell signals to dopaminergic amacrine neurons, and a framework for how dopaminergic amacrine neurons encode light stimuli through the three photosensitive cell classes over the entire visual range. This information will advance our understanding of the regulation of retinal dopamine release by light and have important implications for the roles of dopamine in visual information processing, gene expression, and eye development. These studies will also have the potential to yield new insight into the cellular and synaptic mechanisms responsible for pathogenesis of eye and brain disorders associated with dopaminergic abnormalities such as diabetic retinopathy and Parkinson's disease, and to suggest novel preventive and therapeutic strategies for these disorders.
|
1 |