We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, Aislinn Williams is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2007 — 2010 |
Williams, Aislinn J |
F31Activity Code Description: To provide predoctoral individuals with supervised research training in specified health and health-related areas leading toward the research degree (e.g., Ph.D.). |
Toxic Intermediates and Protein Quality Control in Sca3
DESCRIPTION (provided by the applicant) Polyglutamine (polyQ) disease is a major cause of inherited neurodegeneration in the United States. The nine known polyQ diseases are caused by CAG repeat expansions that encode glutamine repeats in otherwise unrelated disease proteins. Spinocerebellar ataxia type 3 (SCA3), the most common dominantly inherited ataxia, is caused by an expansion of a glutamine repeat in the C-terminus of ataxin-3. One major question in polyQ disease research is the identity of the putative toxic intermediate(s) that triggers neurodegeneration. This grant aims to identify the toxic species that underlie SCA3. In aim 1, two transgenic SCA3 mouse models will be used to investigate the molecular and cellular pathological features of SCA3 over time in an effort to identify the toxic intermediates that lead to neuronal dysfunction and cell death. Aim 2 addresses the link between mutant (expanded) ataxin-3 and protein quality control mechanisms in disease pathogenesis. Specifically, both cell culture and mouse models will be used to investigate the interactions of ataxin-3 with a known modifier of polyQ disease, the co-chaperone and ubiquitin ligase C-terminus of Hsp70 interacting protein (CHIP). Neurodegeneration in many diseases, including Alzheimer's, Parkinson's and the polyglutamine diseases, is thought to be due to misfolding of proteins in neurons. This project will investigate protein misfolding in polyglutamine disease, which currently affects about 100,000 Americans;however, the findings will be broadly relevant to protein misfolding diseases in general. The results may also identify new therapeutic targets for polyglutamine disease.
|
0.934 |