Melchi M. Michel, Ph.D - Publications

Affiliations: 
Psychology Rutgers University, New Brunswick, New Brunswick, NJ, United States 
Area:
Vision, ideal observer models, perceptual learning, visual search, population coding

20 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2019 Semizer Y, Michel MM. Natural image clutter degrades overt search performance independently of set size. Journal of Vision. 19: 1. PMID 30933237 DOI: 10.1167/19.4.1  1
2018 Michel MM, Chen Y, Seidemann E, Geisler WS. Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 30282725 DOI: 10.1523/JNEUROSCI.0246-18.2018  1
2018 Kleene NJ, Michel MM. The capacity of trans-saccadic memory in visual search. Psychological Review. 125: 391-408. PMID 29733665 DOI: 10.1037/rev0000099  0.01
2018 Kleene N, Michel M. Fixation selection for categorical target searches in real world scenes Journal of Vision. 18: 523-523. DOI: 10.1167/18.10.523  0.6
2018 Nikiforova M, Michel M. Characterizing Cue Specificity in Visual Search Performance Journal of Vision. 18: 287-287. DOI: 10.1167/18.10.287  0.6
2017 Semizer Y, Michel MM. Intrinsic position uncertainty impairs overt search performance. Journal of Vision. 17: 13. PMID 28837969 DOI: 10.1167/17.9.13  0.01
2016 Michel M, Wilmott J. Perisaccadic remapping of visual information is predictive, attention-based, and spatially precise Journal of Vision. 16: 114-114. DOI: 10.1167/16.12.114  0.6
2016 Kleene N, Michel M. How Should Observers Allocate Limited Transsaccadic Memory in a Visual Search Task Journal of Vision. 16: 1065-1065. DOI: 10.1167/16.12.1065  0.6
2015 Paulun VC, Schütz AC, Michel MM, Geisler WS, Gegenfurtner KR. Visual search under scotopic lighting conditions. Vision Research. 113: 155-68. PMID 25988753 DOI: 10.1016/J.Visres.2015.05.004  1
2015 Michel M, Parikh U. The timecourse of spatial information integration across saccades Journal of Vision. 15: 1305-1305. DOI: 10.1167/15.12.1305  0.6
2015 Paulun VC, Schütz AC, Michel MM, Geisler WS, Gegenfurtner KR. Visual search under scotopic lighting conditions Vision Research. 113: 155-168. DOI: 10.1016/j.visres.2015.05.004  1
2014 Kleene N, Michel M. Estimating Transsaccadic Memory Capacity for Visual Search Journal of Vision. 14: 1369-1369. DOI: 10.1167/14.10.1369  0.6
2013 Michel MM, Chen Y, Geisler WS, Seidemann E. An illusion predicted by V1 population activity implicates cortical topography in shape perception. Nature Neuroscience. 16: 1477-83. PMID 24036915 DOI: 10.1038/nn.3517  1
2012 Michel MM, Brouwer AM, Jacobs RA, Knill DC. Optimality Principles Apply to a Broad Range of Information Integration Problems in Perception and Action Sensory Cue Integration. DOI: 10.1093/acprof:oso/9780195387247.003.0015  1
2011 Michel M, Geisler WS. Intrinsic position uncertainty explains detection and localization performance in peripheral vision. Journal of Vision. 11: 18. PMID 21257707 DOI: 10.1167/11.1.18  1
2010 Orhan AE, Michel MM, Jacobs RA. Visual learning with reliable and unreliable features. Journal of Vision. 10: 2.1-15. PMID 20462303 DOI: 10.1167/10.2.2  1
2008 Michel MM, Jacobs RA. Learning optimal integration of arbitrary features in a perceptual discrimination task. Journal of Vision. 8: 3.1-16. PMID 18318629 DOI: 10.1167/8.2.3  1
2007 Michel MM, Jacobs RA. Parameter learning but not structure learning: a Bayesian network model of constraints on early perceptual learning. Journal of Vision. 7: 4. PMID 17461672 DOI: 10.1167/7.1.4  1
2007 Michel M, Jacobs R. Optimal feature integration in image-based discrimination task Journal of Vision. 7: 471-471. DOI: 10.1167/7.9.471  0.6
2006 Michel MM, Jacobs RA. The costs of ignoring high-order correlations in populations of model neurons. Neural Computation. 18: 660-82. PMID 16483412 DOI: 10.1162/089976606775623298  1
Show low-probability matches.