Year |
Citation |
Score |
2022 |
Reverdatto S, Prasad A, Belrose JL, Zhang X, Sammons MA, Gibbs KM, Szaro BG. Developmental and Injury-induced Changes in DNA Methylation in Regenerative versus Non-regenerative Regions of the Vertebrate Central Nervous System. Bmc Genomics. 23: 2. PMID 34979916 DOI: 10.1186/s12864-021-08247-0 |
0.782 |
|
2020 |
Belrose JL, Prasad A, Sammons MA, Gibbs KM, Szaro BG. Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons. Bmc Genomics. 21: 540. PMID 32758133 DOI: 10.1186/S12864-020-06954-8 |
0.797 |
|
2018 |
Priscilla R, Szaro BG. Comparisons of SOCS mRNA and Protein Levels in Xenopus Provide Insights into Optic Nerve Regenerative Success. Brain Research. PMID 30315759 DOI: 10.1016/j.brainres.2018.10.012 |
0.822 |
|
2018 |
Gibbs KM, Szaro BG. Tracing Central Nervous System Axon Regeneration in . Cold Spring Harbor Protocols. PMID 29769393 DOI: 10.1101/pdb.prot101030 |
0.818 |
|
2016 |
Hutchins EJ, Belrose JL, Szaro BG. A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo. Biochemical and Biophysical Research Communications. PMID 27501755 DOI: 10.1016/J.Bbrc.2016.08.023 |
0.746 |
|
2016 |
Wang C, Szaro BG. Post-transcriptional regulation mediated by specific neurofilament introns in vivo. Journal of Cell Science. PMID 26906423 DOI: 10.1242/Jcs.185199 |
0.589 |
|
2016 |
Wang C, Szaro BG. Using Xenopus Embryos to Study Transcriptional and Posttranscriptional Gene Regulatory Mechanisms of Intermediate Filaments. Methods in Enzymology. 568: 635-60. PMID 26795487 DOI: 10.1016/Bs.Mie.2015.07.012 |
0.485 |
|
2015 |
Hutchins EJ, Belrose JL, Szaro BG. Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus. Neuroscience Letters. 607: 59-65. PMID 26409787 DOI: 10.1016/J.Neulet.2015.09.027 |
0.8 |
|
2015 |
Liu Y, Wang C, Destin G, Szaro BG. Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis. The European Journal of Neuroscience. 41: 1263-75. PMID 25656701 DOI: 10.1111/Ejn.12848 |
0.583 |
|
2015 |
Wang C, Szaro BG. A method for using direct injection of plasmid DNA to study cis-regulatory element activity in F0 Xenopus embryos and tadpoles. Developmental Biology. 398: 11-23. PMID 25448690 DOI: 10.1016/J.Ydbio.2014.11.010 |
0.431 |
|
2013 |
Hutchins EJ, Szaro BG. c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 33: 14666-80. PMID 24027268 DOI: 10.1523/Jneurosci.4821-12.2013 |
0.782 |
|
2012 |
Liu Y, Yu H, Deaton SK, Szaro BG. Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 3563-74. PMID 22399778 DOI: 10.1523/JNEUROSCI.5197-11.2012 |
0.569 |
|
2011 |
Liu Y, Szaro BG. hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. Development (Cambridge, England). 138: 3079-90. PMID 21693523 DOI: 10.1242/dev.066993 |
0.451 |
|
2011 |
Gibbs KM, Chittur SV, Szaro BG. Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis. The European Journal of Neuroscience. 33: 9-25. PMID 21059114 DOI: 10.1111/j.1460-9568.2010.07477.x |
0.827 |
|
2010 |
Szaro BG, Strong MJ. Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends in Neurosciences. 33: 27-37. PMID 19906448 DOI: 10.1016/J.Tins.2009.10.002 |
0.56 |
|
2010 |
Liu Y, Szaro BG. hnRNP K: An essential element of a posttranscriptional regulon of multiple cytoskeletal mRNAs involved in axon outgrowth Developmental Biology. 344: 492-493. DOI: 10.1016/J.YDBIO.2010.05.436 |
0.491 |
|
2009 |
Ananthakrishnan L, Szaro BG. Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Research. 1250: 27-40. PMID 19027722 DOI: 10.1016/J.Brainres.2008.11.002 |
0.822 |
|
2008 |
Liu Y, Gervasi C, Szaro BG. A crucial role for hnRNP K in axon development in Xenopus laevis. Development (Cambridge, England). 135: 3125-35. PMID 18725517 DOI: 10.1242/Dev.022236 |
0.752 |
|
2008 |
Ananthakrishnan L, Gervasi C, Szaro BG. Dynamic regulation of middle neurofilament RNA pools during optic nerve regeneration. Neuroscience. 153: 144-53. PMID 18358619 DOI: 10.1016/j.neuroscience.2008.02.001 |
0.825 |
|
2008 |
Thyagarajan A, Szaro BG. Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Research. 1189: 33-42. PMID 18054780 DOI: 10.1016/J.Brainres.2007.11.012 |
0.78 |
|
2008 |
Szaro BG, Liu Y. hnRNP K is required for axon outgrowth and neurofilament protein synthesis in Xenopus Developmental Biology. 319: 569. DOI: 10.1016/J.YDBIO.2008.05.361 |
0.509 |
|
2008 |
Gibbs KM, Szaro BG. Identification and gene expression analysis of successfully regenerating CNS neurons in the hindbrain of the Xenopus laevis tadpole Developmental Biology. 319: 558. DOI: 10.1016/j.ydbio.2008.05.324 |
0.784 |
|
2007 |
Thyagarajan A, Strong MJ, Szaro BG. Post-transcriptional control of neurofilaments in development and disease. Experimental Cell Research. 313: 2088-97. PMID 17428473 DOI: 10.1016/J.Yexcr.2007.02.014 |
0.757 |
|
2007 |
Feng X, Castracane J, Tokranova N, Gracias A, Lnenicka G, Szaro BG. A living cell-based biosensor utilizing G-protein coupled receptors: principles and detection methods. Biosensors & Bioelectronics. 22: 3230-7. PMID 17408945 DOI: 10.1016/J.Bios.2007.03.002 |
0.532 |
|
2006 |
Smith A, Gervasi C, Szaro BG. Neurofilament content is correlated with branch length in developing collateral branches of Xenopus spinal cord neurons. Neuroscience Letters. 403: 283-7. PMID 16725258 DOI: 10.1016/J.Neulet.2006.04.055 |
0.749 |
|
2006 |
Gibbs KM, Szaro BG. Regeneration of descending projections in Xenopus laevis tadpole spinal cord demonstrated by retrograde double labeling. Brain Research. 1088: 68-72. PMID 16626660 DOI: 10.1016/j.brainres.2006.02.126 |
0.819 |
|
2006 |
Castracane J, Feng X, Tang O, Welch J, Szaro BG, Gracias A, Tokranova N, Xu B. Life on a chip: nanobioscience R & D at CNSE Nanomedicine: Nanotechnology, Biology and Medicine. 2: 284. DOI: 10.1016/J.Nano.2006.10.034 |
0.465 |
|
2005 |
Feng X, Szaro BG, Gracias A, Baselmans S, Tokranova N, Xu B, Castracane J. Microfabricated devices for bio-applications Progress in Biomedical Optics and Imaging - Proceedings of Spie. 5718: 13-21. DOI: 10.1117/12.591618 |
0.399 |
|
2004 |
Gervasi C, Szaro BG. Performing functional studies of Xenopus laevis intermediate filament proteins through injection of macromolecules into early embryos. Methods in Cell Biology. 78: 673-701. PMID 15646635 DOI: 10.1016/S0091-679X(04)78023-1 |
0.671 |
|
2004 |
Thyagarajan A, Szaro BG. Phylogenetically conserved binding of specific K homology domain proteins to the 3'-untranslated region of the vertebrate middle neurofilament mRNA. The Journal of Biological Chemistry. 279: 49680-8. PMID 15364910 DOI: 10.1074/Jbc.M408915200 |
0.808 |
|
2004 |
Feng X, Szaro BG, Castracane J. Study of Cell Secretion Using MEMS-Based Arrays Proceedings of Spie - the International Society For Optical Engineering. 5345: 35-42. DOI: 10.1117/12.524896 |
0.507 |
|
2003 |
Gervasi C, Thyagarajan A, Szaro BG. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons. The Journal of Comparative Neurology. 461: 262-75. PMID 12724842 DOI: 10.1002/Cne.10695 |
0.847 |
|
2001 |
Walker KL, Yoo HK, Undamatla J, Szaro BG. Loss of neurofilaments alters axonal growth dynamics. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 21: 9655-66. PMID 11739575 DOI: 10.1523/Jneurosci.21-24-09655.2001 |
0.828 |
|
2001 |
Undamatla J, Szaro BG. Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord. Cell Motility and the Cytoskeleton. 49: 16-32. PMID 11309837 DOI: 10.1002/cm.1017 |
0.84 |
|
2000 |
Roosa JR, Gervasi C, Szaro BG. Structure, biological activity of the upstream regulatory sequence, and conserved domains of a middle molecular mass neurofilament gene of Xenopus laevis. Brain Research. Molecular Brain Research. 82: 35-51. PMID 11042356 DOI: 10.1016/S0169-328X(00)00180-7 |
0.733 |
|
2000 |
Gervasi C, Stewart CB, Szaro BG. Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons. The Journal of Comparative Neurology. 423: 512-31. PMID 10870090 DOI: 10.1002/1096-9861(20000731)423:3<512::Aid-Cne13>3.0.Co;2-1 |
0.76 |
|
1999 |
Dearborn RE, Szaro BG, Lnenicka GA. Cloning and characterization of AASPs: novel axon-associated SH3 binding-like proteins. Journal of Neurobiology. 38: 581-94. PMID 10084691 DOI: 10.1002/(Sici)1097-4695(199903)38:4<581::Aid-Neu12>3.0.Co;2-0 |
0.471 |
|
1998 |
Dearborn RE, Szaro BG, Lnenicka GA. Microinjection of mRNA encoding rat synapsin Ia alters synaptic physiology in identified motoneurons of the crayfish, Procambarus clarkii. Journal of Neurobiology. 37: 224-36. PMID 9805269 DOI: 10.1002/(Sici)1097-4695(19981105)37:2<224::Aid-Neu3>3.0.Co;2-S |
0.399 |
|
1997 |
Zhao Y, Szaro BG. Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration. Journal of Neurobiology. 33: 811-24. PMID 9369153 DOI: 10.1002/(SICI)1097-4695(19971120)33:6<811::AID-NEU8>3.0.CO;2-C |
0.581 |
|
1997 |
Gervasi C, Szaro BG. Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis. Brain Research. Molecular Brain Research. 48: 229-42. PMID 9332720 DOI: 10.1016/S0169-328X(97)00096-X |
0.738 |
|
1997 |
Zhao Y, Szaro BG. Xefiltin, a new low molecular weight neuronal intermediate filament protein of Xenopus laevis, shares sequence features with goldfish gefiltin and mammalian alpha-internexin and differs in expression from XNIF and NF-L. The Journal of Comparative Neurology. 377: 351-64. PMID 8989651 DOI: 10.1002/(Sici)1096-9861(19970120)377:3<351::Aid-Cne4>3.0.Co;2-1 |
0.733 |
|
1996 |
Jian X, Szaro BG, Schmidt JT. Myosin light chain kinase: expression in neurons and upregulation during axon regeneration. Journal of Neurobiology. 31: 379-91. PMID 8910795 DOI: 10.1002/(SICI)1097-4695(199611)31:3<379::AID-NEU10>3.0.CO;2-B |
0.483 |
|
1996 |
Lin W, Szaro BG. Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis. Developmental Biology. 179: 197-211. PMID 8873764 DOI: 10.1006/Dbio.1996.0251 |
0.659 |
|
1995 |
Gervasi C, Szaro BG. The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (cdk5) is expressed in embryos by gastrulation. Brain Research. Molecular Brain Research. 33: 192-200. PMID 8750877 DOI: 10.1016/0169-328X(95)00109-6 |
0.74 |
|
1995 |
Lin W, Szaro BG. Neurofilaments help maintain normal morphologies and support elongation of neurites in Xenopus laevis cultured embryonic spinal cord neurons. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 15: 8331-44. PMID 8613766 DOI: 10.1523/Jneurosci.15-12-08331.1995 |
0.708 |
|
1995 |
Zhao Y, Szaro BG. The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 15: 4629-40. PMID 7540681 DOI: 10.1523/Jneurosci.15-06-04629.1995 |
0.56 |
|
1995 |
Zhao Y, Szaro B. The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis The Journal of Neuroscience. 15: 4629-4640. DOI: 10.1523/jneurosci.15-06-04629.1995 |
0.329 |
|
1994 |
Lin W, Szaro BG. Maturation of neurites in mixed cultures of spinal cord neurons and muscle cells from Xenopus laevis embryos followed with antibodies to neurofilament proteins. Journal of Neurobiology. 25: 1235-48. PMID 7815056 DOI: 10.1002/Neu.480251006 |
0.677 |
|
1994 |
Zhao Y, Szaro BG. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis. The Journal of Comparative Neurology. 343: 158-72. PMID 7517961 DOI: 10.1002/Cne.903430112 |
0.805 |
|
1992 |
Charnas LR, Szaro BG, Gainer H. Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 12: 3010-24. PMID 1494944 DOI: 10.1523/Jneurosci.12-08-03010.1992 |
0.591 |
|
1992 |
Way J, Hellmich MR, Jaffe H, Szaro B, Pant HC, Gainer H, Battey J. A high-molecular-weight squid neurofilament protein contains a lamin-like rod domain and a tail domain with Lys-Ser-Pro repeats. Proceedings of the National Academy of Sciences of the United States of America. 89: 6963-7. PMID 1379729 DOI: 10.1073/Pnas.89.15.6963 |
0.578 |
|
1991 |
Szaro BG, Grant P, Lee VM, Gainer H. Inhibition of axonal development after injection of neurofilament antibodies into a Xenopus laevis embryo. The Journal of Comparative Neurology. 308: 576-85. PMID 1865017 DOI: 10.1002/cne.903080406 |
0.623 |
|
1990 |
Szaro BG, Whitnall MH, Gainer H. Phosphorylation-dependent epitopes on neurofilament proteins and neurofilament densities differ in axons in the corticospinal and primary sensory dorsal column tracts in the rat spinal cord. The Journal of Comparative Neurology. 302: 220-35. PMID 1705265 DOI: 10.1002/cne.903020204 |
0.652 |
|
1989 |
Szaro BG, Lee VM, Gainer H. Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis. Brain Research. Developmental Brain Research. 48: 87-103. PMID 2502330 DOI: 10.1016/0165-3806(89)90095-3 |
0.676 |
|
1988 |
Szaro BG, Gainer H. Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles of Xenopus laevis. The Journal of Comparative Neurology. 273: 344-58. PMID 2463277 DOI: 10.1002/cne.902730306 |
0.571 |
|
1988 |
Szaro BG, Gainer H. Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Brain Research. 471: 207-24. PMID 2460198 DOI: 10.1016/0165-3806(88)90100-9 |
0.549 |
|
1987 |
Szaro BG, Tompkins R. Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis. The Journal of Comparative Neurology. 258: 304-16. PMID 3584543 DOI: 10.1002/Cne.902580210 |
0.455 |
|
1987 |
Szaro BG, Loh YP. Changes in axonal transport and glial proteins during optic nerve regeneration in Xenopus laevis. Current Topics in Developmental Biology. 21: 217-54. PMID 2443306 |
0.402 |
|
1985 |
Szaro B, Ide C, Kaye C, Tompkins R. Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers Journal of Experimental Zoology. 234: 117-129. PMID 3989493 DOI: 10.1002/Jez.1402340114 |
0.445 |
|
1985 |
Szaro BG, Loh YP, Hunt RK. Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 192-208. PMID 2578186 |
0.729 |
|
1984 |
Tompkins R, Szaro B, Reinschmidt D, Kaye C, Ide C. Effects of alterations of cell size and number on the structure and function of the Xenopus laevis nervous system Advances in Experimental Medicine and Biology. 181: 135-146. PMID 6532155 |
0.392 |
|
1984 |
Szaro BG, Faulkner LA, Hunt RK, Loh YP. Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns. Brain Research. 297: 337-55. PMID 6202364 DOI: 10.1016/0006-8993(84)90575-4 |
0.709 |
|
1983 |
Kaplan MS, Szaro BG, Weiss TF. Components of cochlear electric responses in the alligator lizard. Hearing Research. 12: 323-51. PMID 6668256 DOI: 10.1016/0378-5955(83)90004-7 |
0.39 |
|
Show low-probability matches. |