Year |
Citation |
Score |
2022 |
Lee JH, Yao Y, Özdemir O, Li M, Weber C, Liu Z, Wermter S. Spatial relation learning in complementary scenarios with deep neural networks. Frontiers in Neurorobotics. 16: 844753. PMID 35966371 DOI: 10.3389/fnbot.2022.844753 |
0.329 |
|
2020 |
Fu D, Weber C, Yang G, Kerzel M, Nan W, Barros P, Wu H, Liu X, Wermter S. What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective. Frontiers in Integrative Neuroscience. 14: 10. PMID 32174816 DOI: 10.3389/Fnint.2020.00010 |
0.346 |
|
2020 |
Xie R, Heinrich S, Liu Z, Weber C, Yao Y, Wermter S, Sun M. Integrating Image-Based and Knowledge-Based Representation Learning Ieee Transactions On Cognitive and Developmental Systems. 12: 169-178. DOI: 10.1109/Tcds.2019.2906685 |
0.405 |
|
2019 |
Mao J, Yao Y, Heinrich S, Hinz T, Weber C, Wermter S, Liu Z, Sun M. Bootstrapping Knowledge Graphs From Images and Text. Frontiers in Neurorobotics. 13: 93. PMID 31798437 DOI: 10.3389/Fnbot.2019.00093 |
0.313 |
|
2019 |
Hafez MB, Weber C, Kerzel M, Wermter S. Deep intrinsically motivated continuous actor-critic for efficient robotic visuomotor skill learning Paladyn, Journal of Behavioral Robotics. 10: 14-29. DOI: 10.1515/pjbr-2019-0005 |
0.393 |
|
2018 |
Parisi GI, Tani J, Weber C, Wermter S. Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization. Frontiers in Neurorobotics. 12: 78. PMID 30546302 DOI: 10.3389/fnbot.2018.00078 |
0.334 |
|
2018 |
Zamani MA, Magg S, Weber C, Wermter S, Fu D. Deep reinforcement learning using compositional representations for performing instructions Paladyn, Journal of Behavioral Robotics. 9: 358-373. DOI: 10.1515/pjbr-2018-0026 |
0.36 |
|
2017 |
Parisi GI, Tani J, Weber C, Wermter S. Lifelong learning of human actions with deep neural network self-organization. Neural Networks : the Official Journal of the International Neural Network Society. 96: 137-149. PMID 29017140 DOI: 10.1016/j.neunet.2017.09.001 |
0.402 |
|
2017 |
Barros P, Parisi GI, Weber C, Wermter S. Emotion-modulated attention improves expression recognition: A deep learning model Neurocomputing. 253: 104-114. DOI: 10.1016/J.Neucom.2017.01.096 |
0.364 |
|
2017 |
Tsironi E, Barros P, Weber C, Wermter S. An analysis of Convolutional Long Short-Term Memory Recurrent Neural Networks for gesture recognition Neurocomputing. 268: 76-86. DOI: 10.1016/J.Neucom.2016.12.088 |
0.411 |
|
2017 |
Parisi GI, Tani J, Weber C, Wermter S. Emergence of multimodal action representations from neural network self-organization Cognitive Systems Research. 43: 208-221. DOI: 10.1016/J.Cogsys.2016.08.002 |
0.456 |
|
2016 |
Cruz F, Magg S, Weber C, Wermter S. Training Agents With Interactive Reinforcement Learning and Contextual Affordances Ieee Transactions On Cognitive and Developmental Systems. 8: 271-284. DOI: 10.1109/Tcds.2016.2543839 |
0.434 |
|
2015 |
Barros P, Jirak D, Weber C, Wermter S. Multimodal emotional state recognition using sequence-dependent deep hierarchical features. Neural Networks : the Official Journal of the International Neural Network Society. PMID 26548943 DOI: 10.1016/J.Neunet.2015.09.009 |
0.32 |
|
2015 |
Parisi GI, Weber C, Wermter S. Self-organizing neural integration of pose-motion features for human action recognition. Frontiers in Neurorobotics. 9: 3. PMID 26106323 DOI: 10.3389/Fnbot.2015.00003 |
0.42 |
|
2013 |
Yan W, Weber C, Wermter S. Learning indoor robot navigation using visual and sensorimotor map information. Frontiers in Neurorobotics. 7: 15. PMID 24109451 DOI: 10.3389/Fnbot.2013.00015 |
0.43 |
|
2012 |
Zhong J, Weber C, Wermter S. A Predictive Network Architecture for a Robust and Smooth Robot Docking Behavior Paladyn, Journal of Behavioral Robotics. 3. DOI: 10.2478/S13230-013-0106-8 |
0.428 |
|
2012 |
Navarro-Guerrero N, Weber C, Schroeter P, Wermter S. Real-world reinforcement learning for autonomous humanoid robot docking Robotics and Autonomous Systems. 60: 1400-1407. DOI: 10.1016/J.Robot.2012.05.019 |
0.454 |
|
2012 |
Heinrich S, Weber C, Wermter S. Adaptive learning of linguistic hierarchy in a multiple timescale recurrent neural network Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 7552: 555-562. DOI: 10.1007/978-3-642-33269-2_70 |
0.306 |
|
2011 |
Saeb S, Weber C, Triesch J. Learning the optimal control of coordinated eye and head movements. Plos Computational Biology. 7: e1002253. PMID 22072953 DOI: 10.1371/Journal.Pcbi.1002253 |
0.568 |
|
2011 |
Kleesiek J, Engel AK, Weber C, Wermter S. Reward-driven learning of sensorimotor laws and visual features 2011 Ieee International Conference On Development and Learning, Icdl 2011. DOI: 10.1109/DEVLRN.2011.6037358 |
0.313 |
|
2009 |
Saeb S, Weber C, Triesch J. Goal-directed learning of features and forward models. Neural Networks : the Official Journal of the International Neural Network Society. 22: 586-92. PMID 19616917 DOI: 10.1016/J.Neunet.2009.06.049 |
0.601 |
|
2009 |
Weber C, Triesch J. Implementations and implications of foveated vision Recent Patents On Computer Science. 2: 75-85. DOI: 10.2174/1874479600902010075 |
0.553 |
|
2009 |
Weber C, Triesch J. Goal-directed feature learning Proceedings of the International Joint Conference On Neural Networks. 3319-3326. DOI: 10.1109/IJCNN.2009.5179064 |
0.545 |
|
2009 |
Saeb S, Weber C, Triesch J. A neural model for the adaptive control of saccadic eye movements Proceedings of the International Joint Conference On Neural Networks. 2740-2747. DOI: 10.1109/IJCNN.2009.5178878 |
0.508 |
|
2008 |
Weber C. How do we approach intrinsic motivation computationally. Frontiers in Neurorobotics. 2. PMID 20827402 DOI: 10.3389/Neuro.12.001.2008 |
0.434 |
|
2008 |
Weber C, Triesch J. A sparse generative model of V1 simple cells with intrinsic plasticity. Neural Computation. 20: 1261-84. PMID 18194109 DOI: 10.1162/Neco.2007.02-07-472 |
0.564 |
|
2008 |
Weber C, Triesch J. From exploration to planning Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5163: 740-749. DOI: 10.1007/978-3-540-87536-9_76 |
0.427 |
|
2007 |
Weber C, Wermter S. A self-organizing map of sigma-pi units Neurocomputing. 70: 2552-2560. DOI: 10.1016/J.Neucom.2006.05.014 |
0.352 |
|
2006 |
Weber C, Wermter S, Elshaw M. A hybrid generative and predictive model of the motor cortex. Neural Networks : the Official Journal of the International Neural Network Society. 19: 339-53. PMID 16352416 DOI: 10.1016/J.Neunet.2005.10.004 |
0.349 |
|
2006 |
Weber C, Muse D, Elshaw M, Wermter S. A camera-direction dependent visual-motor coordinate transformation for a visually guided neural robot Knowledge-Based Systems. 19: 348-355. DOI: 10.1016/J.Knosys.2005.11.020 |
0.379 |
|
2006 |
Muse D, Weber C, Wermter S. Robot docking based on omnidirectional vision and reinforcement learning Knowledge-Based Systems. 19: 324-332. DOI: 10.1016/J.Knosys.2005.11.018 |
0.386 |
|
2005 |
Wermter S, Weber C, Elshaw M, Gallese V, Pulvermüller F. Grounding neural robot language in action Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3575: 162-181. DOI: 10.1007/11521082_10 |
0.399 |
|
2005 |
Wermter S, Palm G, Weber C, Elshaw M. Towards biomimetic neural learning for intelligent robots Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3575: 1-18. DOI: 10.1007/11521082_1 |
0.452 |
|
2004 |
Wermter S, Weber C, Elshaw M, Panchev C, Erwin H, Pulverm̈uller F. Towards multimodal neural robot learning Robotics and Autonomous Systems. 47: 171-175. DOI: 10.1016/J.Robot.2004.03.011 |
0.461 |
|
2004 |
Weber C, Wermter S, Zochios A. Robot docking with neural vision and reinforcement Knowledge-Based Systems. 17: 165-172. DOI: 10.1016/J.Knosys.2004.03.012 |
0.399 |
|
2001 |
Weber C, Obermayer K. Emergence of Modularity within One Sheet of Neurons: A Model Comparison Lecture Notes in Computer Science. 53-67. DOI: 10.1007/3-540-44597-8_4 |
0.545 |
|
1997 |
Weber C. Development and regeneration of the retinotectal map in goldfish: A computational study Philosophical Transactions of the Royal Society B: Biological Sciences. 352: 1603-1623. DOI: 10.1098/Rstb.1997.0144 |
0.326 |
|
Show low-probability matches. |