Hiroshi Maeda, Ph.D. - Publications

Affiliations: 
2006 Michigan State University, East Lansing, MI 
Area:
Plant Physiology

46 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Jung S, Maeda HA. Debottlenecking the DOPA 4,5-dioxygenase step with enhanced tyrosine supply boosts betalain production in Nicotiana benthamiana. Plant Physiology. PMID 38498597 DOI: 10.1093/plphys/kiae166  0.31
2023 El-Azaz J, Moore B, Takeda-Kimura Y, Yokoyama R, Wijesingha Ahchige M, Chen X, Schneider M, Maeda HA. Coordinated regulation of the entry and exit steps of aromatic amino acid biosynthesis supports the dual lignin pathway in grasses. Nature Communications. 14: 7242. PMID 37945591 DOI: 10.1038/s41467-023-42587-7  0.377
2022 Koper K, Hataya S, Hall AG, Takasuka TE, Maeda HA. Biochemical characterization of plant aromatic aminotransferases. Methods in Enzymology. 680: 35-83. PMID 36710018 DOI: 10.1016/bs.mie.2022.07.034  0.372
2022 Yokoyama R, de Oliveira MVV, Takeda-Kimura Y, Ishihara H, Alseekh S, Arrivault S, Kukshal V, Jez JM, Stitt M, Fernie AR, Maeda HA. Point mutations that boost aromatic amino acid production and CO assimilation in plants. Science Advances. 8: eabo3416. PMID 35675400 DOI: 10.1126/sciadv.abo3416  0.362
2022 Yokoyama R, Kleven B, Gupta A, Wang Y, Maeda HA. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. Current Opinion in Plant Biology. 67: 102219. PMID 35550985 DOI: 10.1016/j.pbi.2022.102219  0.362
2021 Lopez-Nieves S, El-Azaz J, Men Y, Holland CK, Feng T, Brockington SF, Jez JM, Maeda HA. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta. The Plant Journal : For Cell and Molecular Biology. PMID 34807484 DOI: 10.1111/tpj.15597  0.37
2021 Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. The Plant Cell. PMID 34623442 DOI: 10.1093/plcell/koab251  0.322
2021 Yoo H, Shrivastava S, Lynch JH, Huang XQ, Widhalm JR, Guo L, Carter BC, Qian Y, Maeda HA, Ogas JP, Morgan JA, Marshall-Colón A, Dudareva N. Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. The Plant Journal : For Cell and Molecular Biology. PMID 34403557 DOI: 10.1111/tpj.15467  0.772
2021 Gibbs NM, Su SH, Lopez-Nieves S, Mann S, Alban C, Maeda HA, Masson PH. Cadaverine regulates biotin synthesis to modulate primary root growth in Arabidopsis. The Plant Journal : For Cell and Molecular Biology. PMID 34250670 DOI: 10.1111/tpj.15417  0.336
2021 Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. The Plant Cell. 33: 671-696. PMID 33955484 DOI: 10.1093/plcell/koaa042  0.383
2021 Maeda HA, Fernie AR. Evolutionary History of Plant Metabolism. Annual Review of Plant Biology. PMID 33848429 DOI: 10.1146/annurev-arplant-080620-031054  0.326
2020 Schenck CA, Westphal J, Jayaraman D, Garcia K, Wen J, Mysore KS, Ané JM, Sumner LW, Maeda HA. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in . Plant Direct. 4: e00218. PMID 32368714 DOI: 10.1002/pld3.218  0.423
2019 Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. The Journal of Biological Chemistry. PMID 31558606 DOI: 10.1074/jbc.REV119.006132  0.336
2019 Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Frontiers in Plant Science. 10: 881. PMID 31354760 DOI: 10.3389/fpls.2019.00881  0.361
2019 Lopez-Nieves S, Pringle A, Maeda HA. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota). Archives of Biochemistry and Biophysics. 665: 12-19. PMID 30771296 DOI: 10.1016/J.Abb.2019.02.005  0.348
2019 Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in . The Journal of Biological Chemistry. PMID 30630953 DOI: 10.1074/Jbc.Ra118.006539  0.41
2019 Smith SD, Angelovici R, Heyduk K, Maeda HA, Moghe GD, Pires JC, Widhalm JR, Wisecaver JH. The renaissance of comparative biochemistry. American Journal of Botany. PMID 30629738 DOI: 10.1002/Ajb2.1216  0.598
2018 Timoneda A, Sheehan H, Feng T, Lopez-Nieves S, Maeda HA, Brockington S. Redirecting Primary Metabolism to Boost Production of Tyrosine-Derived Specialised Metabolites in Planta. Scientific Reports. 8: 17256. PMID 30467357 DOI: 10.1038/S41598-018-33742-Y  0.323
2018 de Oliveira MVV, Jin X, Chen X, Griffith D, Batchu S, Maeda HA. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana. The Plant Journal : For Cell and Molecular Biology. PMID 30457178 DOI: 10.1111/tpj.14169  0.368
2018 Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 149: 82-102. PMID 29477627 DOI: 10.1016/j.phytochem.2018.02.003  0.375
2018 Hollland CK, Berkovich DA, Kohn ML, Maeda H, Jez JM. Structural Basis for Substrate Recognition and Inhibition of Prephenate Aminotransferase from Arabidopsis. The Plant Journal : For Cell and Molecular Biology. PMID 29405514 DOI: 10.1111/Tpj.13856  0.443
2017 Schenck CA, Men Y, Maeda HA. Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes. Frontiers in Molecular Biosciences. 4: 73. PMID 29164132 DOI: 10.3389/fmolb.2017.00073  0.372
2017 Lopez-Nieves S, Yang Y, Timoneda A, Wang M, Feng T, Smith SA, Brockington SF, Maeda HA. Relaxation of tyrosine pathway regulation underlies the evolution of betalain pigmentation in Caryophyllales. The New Phytologist. PMID 28990194 DOI: 10.1111/Nph.14822  0.38
2017 Lynch JH, Orlova I, Zhao C, Guo L, Jaini R, Maeda H, Akhtar T, Cruz-Lebron J, Rhodes D, Morgan J, Pilot G, Pichersky E, Dudareva N. Multifaceted Plant Reponses to Circumvent Phe Hyperaccumulation by Downregulation of Flux through the Shikimate Pathway and by Vacuolar Phe Sequestration. The Plant Journal : For Cell and Molecular Biology. PMID 28977710 DOI: 10.1111/Tpj.13730  0.729
2017 Schenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nature Chemical Biology. PMID 28671678 DOI: 10.1038/Nchembio.2414  0.371
2016 Maeda H. CORRECTION: Phylobiochemical Characterization of Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway. The Plant Cell. PMID 28011691 DOI: 10.1105/Tpc.16.00951  0.439
2016 Wang M, Toda K, Maeda HA. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. Phytochemistry. PMID 27726859 DOI: 10.1016/j.phytochem.2016.09.007  0.353
2015 Schenck CA, Chen S, Siehl DL, Maeda HA. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nature Chemical Biology. 11: 52-7. PMID 25402771 DOI: 10.1038/nchembio.1693  0.348
2014 Dornfeld C, Weisberg AJ, K C R, Dudareva N, Jelesko JG, Maeda HA. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. The Plant Cell. 26: 3101-14. PMID 25070637 DOI: 10.1105/Tpc.114.127407  0.654
2014 Maeda H, Song W, Sage T, Dellapenna D. Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants. Frontiers in Plant Science. 5: 46. PMID 24600460 DOI: 10.3389/Fpls.2014.00046  0.759
2013 Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nature Communications. 4: 2833. PMID 24270997 DOI: 10.1038/Ncomms3833  0.675
2012 Muhlemann JK, Maeda H, Chang CY, San Miguel P, Baxter I, Cooper B, Perera MA, Nikolau BJ, Vitek O, Morgan JA, Dudareva N. Developmental changes in the metabolic network of snapdragon flowers. Plos One. 7: e40381. PMID 22808147 DOI: 10.1371/Journal.Pone.0040381  0.64
2012 Maeda H, Dudareva N. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annual Review of Plant Biology. 63: 73-105. PMID 22554242 DOI: 10.1146/Annurev-Arplant-042811-105439  0.673
2011 Maeda H, Yoo H, Dudareva N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chemical Biology. 7: 19-21. PMID 21102469 DOI: 10.1038/Nchembio.485  0.668
2010 Song W, Maeda H, DellaPenna D. Mutations of the ER to plastid lipid transporters TGD1, 2, 3 and 4 and the ER oleate desaturase FAD2 suppress the low temperature-induced phenotype of Arabidopsis tocopherol-deficient mutant vte2. The Plant Journal : For Cell and Molecular Biology. 62: 1004-18. PMID 20345604 DOI: 10.1111/J.1365-313X.2010.04212.X  0.758
2010 Maeda H, Shasany AK, Schnepp J, Orlova I, Taguchi G, Cooper BR, Rhodes D, Pichersky E, Dudareva N. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. The Plant Cell. 22: 832-49. PMID 20215586 DOI: 10.1105/Tpc.109.073247  0.703
2009 Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta Plant Cell. 21: 4002-4017. PMID 20028839 DOI: 10.1105/Tpc.109.071282  0.706
2008 Maeda H, Sage TL, Isaac G, Welti R, Dellapenna D. Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. The Plant Cell. 20: 452-70. PMID 18314499 DOI: 10.1105/Tpc.107.054718  0.67
2007 Maeda H, DellaPenna D. Tocopherol functions in photosynthetic organisms. Current Opinion in Plant Biology. 10: 260-5. PMID 17434792 DOI: 10.1016/J.Pbi.2007.04.006  0.69
2006 Maeda H, Song W, Sage TL, DellaPenna D. Tocopherols play a crucial role in low-temperature adaptation and Phloem loading in Arabidopsis. The Plant Cell. 18: 2710-32. PMID 17012603 DOI: 10.1105/Tpc.105.039404  0.759
2006 Sakuragi Y, Maeda H, Dellapenna D, Bryant DA. alpha-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiology. 141: 508-21. PMID 16565298 DOI: 10.1104/Pp.105.074765  0.641
2006 Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Erratum: Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation (Plant Physiology (2005) 138 (1422-1435)) Plant Physiology. 140. DOI: 10.1104/Pp.104.900187  0.627
2005 Maeda H, Sakuragi Y, Bryant DA, Dellapenna D. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiology. 138: 1422-35. PMID 15965015 DOI: 10.1104/Pp.105.061135  0.636
2003 Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. The Plant Cell. 15: 2343-56. PMID 14508009 DOI: 10.1105/Tpc.013656  0.707
1999 Maeda H, Selvakumar N, Kraus GA. An efficient synthesis of 4-aryl kainic acid analogs Tetrahedron. 55: 943-954. DOI: 10.1016/S0040-4020(98)01101-6  0.301
1995 Kraus GA, Maeda H. Carbohydrate-Based Strategy for the Synthesis of Zaragozic Acid via a Novel Lewis Acid-Mediated Reaction of an .alpha.-Acetoxy Sulfide Journal of Organic Chemistry. 60: 2-3. DOI: 10.1021/Jo00106A001  0.309
Show low-probability matches.