Year |
Citation |
Score |
2024 |
Shinji Y, Okuno H, Hirata Y. Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control. Frontiers in Neuroscience. 18: 1220908. PMID 38726031 DOI: 10.3389/fnins.2024.1220908 |
0.338 |
|
2020 |
Soga J, Matsuyama M, Miura H, Highstein S, Baker R, Hirata Y. Cerebellar Roles in Frequency Competitive Motor Learning of the Vestibulo-ocular Reflex. Neuroscience. PMID 32946949 DOI: 10.1016/j.neuroscience.2020.09.016 |
0.67 |
|
2020 |
Miki S, Urase K, Baker R, Hirata Y. Velocity storage mechanism drives a cerebellar clock for predictive eye velocity control. Scientific Reports. 10: 6944. PMID 32332917 DOI: 10.1038/s41598-020-63641-0 |
0.421 |
|
2020 |
Emoto J, Hirata Y. Lightweight Convolutional Neural Network for Image Processing Method for Gaze Estimation and Eye Movement Event Detection Ipsj Transactions On Bioinformatics. 13: 7-15. DOI: 10.2197/ipsjtbio.13.7 |
0.304 |
|
2019 |
Sugawara T, Sakai H, Hirata Y. Vestibulo-ocular reflex characteristics during unidirectional translational whole-body vibration without head restriction. Ergonomics. 1-10. PMID 31707951 DOI: 10.1080/00140139.2019.1683616 |
0.353 |
|
2018 |
Takatori S, Inagaki K, Hirata Y. Realization of Direction Selective Motor Learning in the Artificial Cerebellum: Simulation on the Vestibuloocular Reflex Adaptation. Conference Proceedings : ... Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Ieee Engineering in Medicine and Biology Society. Annual Conference. 2018: 5077-5080. PMID 30441482 DOI: 10.1109/EMBC.2018.8513225 |
0.475 |
|
2018 |
Miki S, Baker R, Hirata Y. Cerebellar role in predictive control of eye velocity initiation and termination. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 30355638 DOI: 10.1523/JNEUROSCI.1375-18.2018 |
0.42 |
|
2018 |
Hirata Y, Miura S, Takagi Y, Kashima T, Urase K, Miki S. Hyper-gravity promotes motor learning in goldfish and humans Frontiers in Physiology. 9. DOI: 10.3389/conf.fphys.2018.26.00049 |
0.47 |
|
2017 |
Takeuchi M, Inoue C, Goshima A, Nagao Y, Shimizu K, Miyamoto H, Shimizu T, Hashimoto H, Yonemura S, Kawahara A, Hirata Y, Yoshida M, Hibi M. Medaka and zebrafish contactin1 mutants as a model for understanding neural circuits for motor coordination. Genes to Cells : Devoted to Molecular & Cellular Mechanisms. PMID 28639422 DOI: 10.1111/gtc.12509 |
0.325 |
|
2017 |
Inagaki K, Hirata Y. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation. Cerebellum (London, England). PMID 28444617 DOI: 10.1007/s12311-017-0857-6 |
0.513 |
|
2017 |
Hirata Y. Elucidation of Motor Learning Mechanisms by Artificial Cerebellums and the Cerebellum Machine Interface, and Application to Adaptive Robot Control The Brain & Neural Networks. 24: 182-194. DOI: 10.3902/jnns.24.182 |
0.428 |
|
2016 |
Pinzon Morales RD, Hirata Y. Evaluation of Teaching Signals for Motor Control in the Cerebellum during Real-World Robot Application. Brain Sciences. 6. PMID 27999381 DOI: 10.3390/brainsci6040062 |
0.387 |
|
2015 |
Pinzon-Morales RD, Hirata Y. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control. Frontiers in Neural Circuits. 9: 18. PMID 25983678 DOI: 10.3389/fncir.2015.00018 |
0.463 |
|
2014 |
Pinzon-Morales RD, Hirata Y. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control. Frontiers in Neural Circuits. 8: 131. PMID 25414644 DOI: 10.3389/fncir.2014.00131 |
0.455 |
|
2014 |
Pinzon-Morales R, Hirata Y. The number of granular cells in a cerebellar neuronal network model engaged during robot control increases with the complexity of the motor task Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P143 |
0.374 |
|
2014 |
Pinzon-Morales R, Hirata Y. Spontaneous firing activity in climbing fiber is critical for a realistic bi-hemispherical cerebellar neuronal network during robot control Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P142 |
0.44 |
|
2012 |
Hirata Y, Katagiri K, Tanaka Y. Direct causality between single-Purkinje cell activities and motor learning revealed by a cerebellum-machine interface utilizing VOR adaptation paradigm. Cerebellum (London, England). 11: 455-6. PMID 22528967 DOI: 10.1007/s12311-012-0385-3 |
0.468 |
|
2012 |
Pinzon-Morales R, Ohata Y, Hirata Y. Adaptive control of 2-wheeled balancing robot by two hemispheric cerebellar neuronal network model Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P118 |
0.406 |
|
2011 |
Yamazaki T, Ikeno H, Okumura Y, Satoh S, Kamiyama Y, Hirata Y, Inagaki K, Ishihara A, Kannon T, Usui S. Reprint of: Simulation Platform: a cloud-based online simulation environment. Neural Networks : the Official Journal of the International Neural Network Society. 24: 927-32. PMID 21944492 DOI: 10.1016/j.neunet.2011.08.007 |
0.636 |
|
2011 |
Inagaki K, Hirata Y, Usui S. A model-based theory on the signal transformation for microsaccade generation. Neural Networks : the Official Journal of the International Neural Network Society. 24: 990-7. PMID 21741208 DOI: 10.1016/j.neunet.2011.06.007 |
0.601 |
|
2011 |
Yamazaki T, Ikeno H, Okumura Y, Satoh S, Kamiyama Y, Hirata Y, Inagaki K, Ishihara A, Kannon T, Usui S. Simulation Platform: a cloud-based online simulation environment. Neural Networks : the Official Journal of the International Neural Network Society. 24: 693-8. PMID 21741207 DOI: 10.1016/j.neunet.2011.06.010 |
0.636 |
|
2011 |
Yamazaki T, Ikeno H, Okumura Y, Satoh S, Kamiyama Y, Hirata Y, Inagaki K, Ishihara A, Kannon T, Usui S. Simulation platform: cloud-computing meets computational neuroscience Bmc Neuroscience. 12: P346. DOI: 10.1186/1471-2202-12-S1-P346 |
0.481 |
|
2011 |
Okamura N, Baker R, Hirata Y. Monocular eye position specificity in the oculomotor neural integrator Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P151 |
0.398 |
|
2010 |
Inagaki K, Hirata Y, Usui S. A modeling study on the signal transformation for the microsaccade generation Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P115 |
0.363 |
|
2010 |
Inagaki K, Kobayashi S, Hirata Y. The origin of the frequency selectivity in VOR motor learning revealed by a realistic cerebellar spiking neuron network model. Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P107 |
0.446 |
|
2010 |
Katagiri K, Tanaka Y, Hirata Y. Cerebellar brain machine interface to evaluate roles of a single Purkinje cell in motor learning Neuroscience Research. 68: e328. DOI: 10.1016/j.neures.2010.07.1452 |
0.456 |
|
2009 |
Inagaki K, Kannon T, Kamiyama Y, Satoh S, Kamiji N, Hirata Y, Ishihara A, Shouno H, Usui S. Platform for collaborative brain system modeling (PLATO): toward large scale modeling for visual system Frontiers in Neuroinformatics. 3. DOI: 10.3389/Conf.Neuro.11.2009.08.051 |
0.63 |
|
2009 |
Usui S, Yamazaki T, Ikeno H, Okumura Y, Satoh S, Kamiyama Y, Hirata Y, Inagaki K, Kannon T, Kamiji N, Ishihara A. Simulation Platform: a test environment of computational models via web Frontiers in Neuroinformatics. 3. DOI: 10.3389/Conf.Neuro.11.2009.08.047 |
0.623 |
|
2009 |
Usui S, Inagaki K, Kannon T, Kamiyama Y, Satoh S, Kamiji NL, Hirata Y, Ishihara A, Shouno H. A next generation modeling environment PLATO: Platform for collaborative brain system modeling Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5863: 84-90. DOI: 10.1007/978-3-642-10677-4_9 |
0.599 |
|
2008 |
Inagaki K, Hirata Y, Blazquez PM, Highstein SM. Computer simulation of vestibuloocular reflex motor learning using a realistic cerebellar cortical neuronal network model Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4984: 902-912. DOI: 10.1007/978-3-540-69158-7_93 |
0.789 |
|
2007 |
Sakai H, Hirata Y, Usui S. Relationship between residual aberration and light-adapted pupil size. Optometry and Vision Science : Official Publication of the American Academy of Optometry. 84: 517-21. PMID 17568322 DOI: 10.1097/OPX.0b013e31806dba43 |
0.521 |
|
2006 |
Yoshikawa A, Hirata Y. Mechanism of frequency selectivity in VOR motor learning: frequency channel or waveform learning? Conference Proceedings : ... Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Ieee Engineering in Medicine and Biology Society. Annual Conference. 1: 6217-20. PMID 17946750 DOI: 10.1109/IEMBS.2006.260163 |
0.306 |
|
2006 |
Blazquez PM, Hirata Y, Highstein SM. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning. Journal of Neurophysiology. 95: 1812-25. PMID 16319196 DOI: 10.1152/jn.01061.2005 |
0.801 |
|
2006 |
Hirata Y, Blazquez P, Highstein S. Identification of loci involved in the memory of chronic motor learning of the vertical vestibuloocular reflex in squirrel monkeys The Cerebellum. 5: 296-297. DOI: 10.1007/BF02835429 |
0.781 |
|
2005 |
Hirata Y, Yoshikawa A, Blazquez PM, Highstein SM. Evaluation of the inverse dynamic model in cerebellum during visual-vestibular interactions at different VOR gains in squirrel monkeys Neurocomputing. 65: 709-717. DOI: 10.1016/j.neucom.2004.10.101 |
0.769 |
|
2004 |
Blazquez PM, Hirata Y, Highstein SM. The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum? Cerebellum (London, England). 3: 188-92. PMID 15543809 DOI: 10.1080/14734220410018120 |
0.808 |
|
2004 |
Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM. Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neuroreport. 15: 1007-11. PMID 15076724 DOI: 10.1097/00001756-200404290-00015 |
0.757 |
|
2003 |
Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM. Cerebellar signatures of vestibulo-ocular reflex motor learning. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 23: 9742-51. PMID 14586001 DOI: 10.1523/Jneurosci.23-30-09742.2003 |
0.76 |
|
2003 |
Hirata Y, Takeuchi I, Highstein SM. A dynamical model for the vertical vestibuloocular reflex and optokinetic response in primate. Neurocomputing. 52: 531-40. PMID 12934604 DOI: 10.1016/S0925-2312(02)00777-4 |
0.637 |
|
2003 |
Hirata Y, Yamaji K, Sakai H, Usui S. Function of the pupil in vision and information capacity of retinal image Systems and Computers in Japan. 34: 48-57. DOI: 10.1002/scj.10344 |
0.531 |
|
2002 |
Hirata Y, Highstein SM. Plasticity of the vertical VOR: a system identification approach to localizing the adaptive sites. Annals of the New York Academy of Sciences. 978: 480-95. PMID 12582075 DOI: 10.1111/j.1749-6632.2002.tb07589.x |
0.722 |
|
2002 |
Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. Journal of Neurophysiology. 88: 3194-207. PMID 12466440 DOI: 10.1152/jn.00698.2001 |
0.599 |
|
2002 |
Sakai H, Kannon T, Hirata Y, Usui S. Influence of the eye refraction on the luminance-pupil diameter relationship Journal of Vision. 2: 39a. DOI: 10.1167/2.10.39 |
0.545 |
|
2002 |
Yamaji K, Hirata Y, Usui S. Evaluation of the autonomic nervous activity during parabolic flight by pupillary flash response Electronics and Communications in Japan, Part Iii: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi). 85: 56-64. DOI: 10.1002/ecjc.10054 |
0.533 |
|
2001 |
Hirata Y, Highstein SM. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. Journal of Neurophysiology. 85: 2267-88. PMID 11353040 DOI: 10.1152/JN.2001.85.5.2267 |
0.676 |
|
2001 |
Su M, Yoshida Y, Hirata Y, Watahiki Y, Nagata K. Primary involvement of the motor area in association with the nigrostriatal pathway in multiple system atrophy: neuropathological and morphometric evaluations Acta Neuropathologica. 101: 57-64. PMID 11194942 DOI: 10.1007/S004010000273 |
0.404 |
|
2001 |
Sato M, Nagata K, Watahiki Y, Satoh Y, Hirata Y. Diagnosis of pure motor monoparesis of the upper limb due to small cerebral infarcts using diffusion-weighted imaging. Nosotchu. 23: 200-203. DOI: 10.3995/Jstroke.23.200 |
0.307 |
|
2001 |
Yamaji K, Hirata Y, Usui S. Improvement of the method for monitoring autonomic nervous activity by pupillary flash response Systems and Computers in Japan. 32: 23-30. DOI: 10.1002/scj.1082 |
0.541 |
|
2000 |
Hirata Y, Highstein SM. Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Progress in Brain Research. 124: 221-32. PMID 10943128 DOI: 10.1016/S0079-6123(00)24019-3 |
0.642 |
|
2000 |
Yamaji K, Hirata Y, Usui S. A method for monitoring autonomic nervous activity by pupillary flash response Systems and Computers in Japan. 31: 22-31. DOI: 10.1002/(SICI)1520-684X(200004)31:4<22::AID-SCJ3>3.0.CO;2-W |
0.552 |
|
1999 |
Sakai H, Yamaji K, Hirata Y, Toda N, Usui S. Development of Pupil Size and Eye Movement Measurement System and its Application for Evaluating the Spatial Disorientation Ieej Transactions On Electronics, Information and Systems. 119: 70-76. DOI: 10.1541/IEEJEISS1987.119.1_70 |
0.562 |
|
1996 |
Usui S, Hirata Y, Hagiwara K, Toda N, Akagi I. An analysis of carp cerebellar eeg under the microgravitational environment Systems and Computers in Japan. 27: 71-83. DOI: 10.1002/scj.4690270307 |
0.555 |
|
1995 |
Usui S, Hirata Y. Estimation of autonomic nervous activity using the inverse dynamic model of the pupil muscle plant. Annals of Biomedical Engineering. 23: 375-87. PMID 7486345 DOI: 10.1007/BF02584438 |
0.537 |
|
Show low-probability matches. |