Nicolás Marchant, Ph.D. - Publications

Affiliations: 
Universidad Adolfo Ibanez 

6 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Author Correction: Neurocognitive correlates of semantic memory navigation in Parkinson's disease. Npj Parkinson's Disease. 10: 30. PMID 38287053 DOI: 10.1038/s41531-024-00644-y  0.536
2024 Toro-Hernández FD, Migeot J, Marchant N, Olivares D, Ferrante F, González-Gómez R, González Campo C, Fittipaldi S, Rojas-Costa GM, Moguilner S, Slachevsky A, Chaná Cuevas P, Ibáñez A, Chaigneau S, García AM. Neurocognitive correlates of semantic memory navigation in Parkinson's disease. Npj Parkinson's Disease. 10: 15. PMID 38195756 DOI: 10.1038/s41531-024-00630-4  0.552
2023 Ramos D, Moreno S, Canessa E, Chaigneau SE, Marchant N. AC-PLT: An algorithm for computer-assisted coding of semantic property listing data. Behavior Research Methods. PMID 37831369 DOI: 10.3758/s13428-023-02260-9  0.556
2023 Marchant N, Quillien T, Chaigneau SE. A Context-Dependent Bayesian Account for Causal-Based Categorization. Cognitive Science. 47: e13240. PMID 36680423 DOI: 10.1111/cogs.13240  0.571
2022 Marchant N, Chaigneau SE. On the importance of feedback for categorization: Revisiting category learning experiments using an adaptive filter model. Journal of Experimental Psychology. Animal Learning and Cognition. 48: 295-306. PMID 36265022 DOI: 10.1037/xan0000339  0.577
2022 Marchant N, Canessa E, Chaigneau SE. An adaptive linear filter model of procedural category learning. Cognitive Processing. PMID 35513744 DOI: 10.1007/s10339-022-01094-1  0.594
Show low-probability matches.