Area:
Reading and reasoning in children
We are testing a new system for linking grants to scientists.
The funding information displayed below comes from the
NIH Research Portfolio Online Reporting Tools and the
NSF Award Database.
The grant data on this page is limited to grants awarded in the United States and is thus partial. It can nonetheless be used to understand how funding patterns influence mentorship networks and vice-versa, which has deep implications on how research is done.
You can help! If you notice any innacuracies, please
sign in and mark grants as correct or incorrect matches.
Sign in to see low-probability grants and correct any errors in linkage between grants and researchers.
High-probability grants
According to our matching algorithm, May Jadallah is the likely recipient of the following grants.
Years |
Recipients |
Code |
Title / Keywords |
Matching score |
2013 — 2017 |
Hund, Alycia Thayn, Jonathan Jadallah, May |
N/AActivity Code Description: No activity code was retrieved: click on the grant title for more information |
Promoting Students' Spatial Thinking in Upper Elementary Grades Using Geographic Information Systems (Gis) @ Illinois State University
This project explores the potential for enhancing students' interest and ability in STEM disciplines by broadening fourth grade students' understanding and interest in the spatial perspectives inherent in geography and other science disciplines. The study incorporates the latest developments in the use of Geographic Information Systems (GIS) within the classroom. The project tests a set of hypotheses that posit that the use of GIS in the classroom results in a measureable improvement in students' spatial reasoning and motivation. Geography teachers in elementary schools are trained to use GIS software to create digital maps specific to the subject matter and projects on which their students work. Students then work in small collaborative groups and engage in open discussions designed to enhance the development and use of their spatial and multi-step causal reasoning.
GIS has been used in middle and high school settings. This project introduces GIS to upper elementary grades particularly to allow students an early opportunity to be involved in meaningful data and map-driven activities to promote their spatial skills. The proposal team predicts that the traditional gap between girls and boys in spatial skills will shrink with training thus will be strongly pronounced in the experimental relative to control groups. The project documents the effectiveness of instructional practices that are likely to enhance multistep reasoning, systems thinking, conceptual and spatial understanding, and motivation for learning while learning to work with maps to solve problems involving geography and ecological awareness. The project develops instructional methods that incorporate innovative tools for promoting problem solving to address real-life issues in this increasingly technology-driven era. The innovative tool is open-source and designed for professionals, but it can be modified to be child-friendly. Classroom activities are integrated with science and social studies curricula and content standards. Teachers are expected to find the curriculum attractive and easy to implement.
|
0.979 |