Sam J. Gershman

Affiliations: 
Princeton University, Princeton, NJ 
 Psychology Harvard University, Cambridge, MA, United States 
Area:
Cognitive & computational neuroscience
Google:
"Sam Gershman"
Mean distance: 13.03 (cluster 23)
 
SNBCP

Parents

Sign in to add mentor
Ken A. Paller research assistant 2004-2005 Northwestern
Hedy Kober research assistant 2005-2007 Columbia
Kevin Nicholas Ochsner research assistant 2005-2007 Columbia
Tor D. Wager research assistant 2005-2007 Columbia
Yael Niv grad student 2013 Princeton
 (Memory modification in the brain: Computational and experimental investigations.)
Kenneth A. Norman grad student 2013 Princeton
 (Memory modification in the brain: Computational and experimental investigations.)
Joshua Tenenbaum post-doc MIT
Nathaniel D. Daw research scientist 2007-2008 NYU
Bijan Pesaran research scientist 2007-2008 NYU

Children

Sign in to add trainee
Hayley M. Dorfman grad student
Edward H. Patzelt grad student
Lucy Lai grad student 2018-
Rahul Bhui post-doc Harvard
Wouter Kool post-doc 2015- Harvard
Honi Sanders post-doc 2016- Harvard
BETA: Related publications

Publications

You can help our author matching system! If you notice any publications incorrectly attributed to this author, please sign in and mark matches as correct or incorrect.

Gershman SJ. (2016) On the Blessing of Abstraction. Quarterly Journal of Experimental Psychology (2006). 1-9
Tervo DG, Tenenbaum JB, Gershman SJ. (2016) Toward the neural implementation of structure learning. Current Opinion in Neurobiology. 37: 99-105
Gershman SJ. (2015) A Unifying Probabilistic View of Associative Learning. Plos Computational Biology. 11: e1004567
Gershman SJ, Frazier PI, Blei DM. (2015) Distance Dependent Infinite Latent Feature Models. Ieee Transactions On Pattern Analysis and Machine Intelligence. 37: 334-45
Gershman SJ, Horvitz EJ, Tenenbaum JB. (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science (New York, N.Y.). 349: 273-8
Gershman SJ, Hartley CA. (2015) Individual differences in learning predict the return of fear. Learning & Behavior. 43: 243-50
Niv Y, Daniel R, Geana A, et al. (2015) Reinforcement learning in multidimensional environments relies on attention mechanisms. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 8145-57
Gershman SJ, Tenenbaum JB, Jäkel F. (2015) Discovering hierarchical motion structure. Vision Research
Gershman SJ, Niv Y. (2015) Novelty and Inductive Generalization in Human Reinforcement Learning. Topics in Cognitive Science
Huys QJ, Lally N, Faulkner P, et al. (2015) Interplay of approximate planning strategies. Proceedings of the National Academy of Sciences of the United States of America. 112: 3098-103
See more...