Markus Diesmann - Publications

Affiliations: 
RIKEN Brain Science Institute, Wakō-shi, Saitama-ken, Japan 
Area:
Computational Neuroscience

174 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2022 Senk J, Kriener B, Djurfeldt M, Voges N, Jiang HJ, Schüttler L, Gramelsberger G, Diesmann M, Plesser HE, van Albada SJ. Connectivity concepts in neuronal network modeling. Plos Computational Biology. 18: e1010086. PMID 36074778 DOI: 10.1371/journal.pcbi.1010086  0.784
2022 Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S, Tetzlaff T, Diesmann M, Senk J. A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Frontiers in Neuroinformatics. 16: 837549. PMID 35645755 DOI: 10.3389/fninf.2022.837549  0.42
2022 Pronold J, Jordan J, Wylie BJN, Kitayama I, Diesmann M, Kunkel S. Routing Brain Traffic Through the Von Neumann Bottleneck: Parallel Sorting and Refactoring. Frontiers in Neuroinformatics. 15: 785068. PMID 35300490 DOI: 10.3389/fninf.2021.785068  0.409
2022 Heittmann A, Psychou G, Trensch G, Cox CE, Wilcke WW, Diesmann M, Noll TG. Simulating the Cortical Microcircuit Significantly Faster Than Real Time on the IBM INC-3000 Neural Supercomputer. Frontiers in Neuroscience. 15: 728460. PMID 35126034 DOI: 10.3389/fnins.2021.728460  0.407
2022 Dahmen D, Layer M, Deutz L, Dąbrowska PA, Voges N, von Papen M, Brochier T, Riehle A, Diesmann M, Grün S, Helias M. Global organization of neuronal activity only requires unstructured local connectivity. Elife. 11. PMID 35049496 DOI: 10.7554/eLife.68422  0.681
2021 Dasbach S, Tetzlaff T, Diesmann M, Senk J. Dynamical Characteristics of Recurrent Neuronal Networks Are Robust Against Low Synaptic Weight Resolution. Frontiers in Neuroscience. 15: 757790. PMID 35002599 DOI: 10.3389/fnins.2021.757790  0.339
2021 Spreizer S, Senk J, Rotter S, Diesmann M, Weyers B. NEST Desktop, an Educational Application for Neuroscience. Eneuro. 8. PMID 34764188 DOI: 10.1523/ENEURO.0274-21.2021  0.796
2021 Stapmanns J, Hahne J, Helias M, Bolten M, Diesmann M, Dahmen D. Event-Based Update of Synapses in Voltage-Based Learning Rules. Frontiers in Neuroinformatics. 15: 609147. PMID 34177505 DOI: 10.3389/fninf.2021.609147  0.323
2020 Jordan J, Helias M, Diesmann M, Kunkel S. Efficient Communication in Distributed Simulations of Spiking Neuronal Networks With Gap Junctions. Frontiers in Neuroinformatics. 14: 12. PMID 32431602 DOI: 10.3389/Fninf.2020.00012  0.49
2020 Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Correction to: Multi-scale account of the network structure of macaque visual cortex. Brain Structure & Function. PMID 32052112 DOI: 10.1007/S00429-019-02020-6  0.314
2019 Jordan J, Petrovici MA, Breitwieser O, Schemmel J, Meier K, Diesmann M, Tetzlaff T. Deterministic networks for probabilistic computing. Scientific Reports. 9: 18303. PMID 31797943 DOI: 10.1038/S41598-019-54137-7  0.449
2019 Kobayashi R, Kurita S, Kurth A, Kitano K, Mizuseki K, Diesmann M, Richmond BJ, Shinomoto S. Reconstructing neuronal circuitry from parallel spike trains. Nature Communications. 10: 4468. PMID 31578320 DOI: 10.1038/S41467-019-12225-2  0.451
2019 Dahmen D, Grün S, Diesmann M, Helias M. Second type of criticality in the brain uncovers rich multiple-neuron dynamics. Proceedings of the National Academy of Sciences of the United States of America. PMID 31189590 DOI: 10.1073/Pnas.1818972116  0.699
2019 Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV, Plesser HE, Schürmann F. The Scientific Case for Brain Simulations. Neuron. 102: 735-744. PMID 31121126 DOI: 10.1016/J.Neuron.2019.03.027  0.671
2018 Kass RE, Amari SI, Arai K, Brown EN, Diekman CO, Diesmann M, Doiron B, Eden UT, Fairhall AL, Fiddyment GM, Fukai T, Grün S, Harrison MT, Helias M, Nakahara H, et al. Computational Neuroscience: Mathematical and Statistical Perspectives. Annual Review of Statistics and Its Application. 5: 183-214. PMID 30976604 DOI: 10.1146/annurev-statistics-041715-033733  0.634
2018 Senk J, Carde C, Hagen E, Kuhlen TW, Diesmann M, Weyers B. VIOLA-A Multi-Purpose and Web-Based Visualization Tool for Neuronal-Network Simulation Output. Frontiers in Neuroinformatics. 12: 75. PMID 30467469 DOI: 10.3389/Fninf.2018.00075  0.494
2018 Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. Plos Computational Biology. 14: e1006359. PMID 30335761 DOI: 10.1371/Journal.Pcbi.1006359  0.46
2018 Maksimov A, Diesmann M, van Albada SJ. Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models. Frontiers in Computational Neuroscience. 12: 44. PMID 30042668 DOI: 10.3389/Fncom.2018.00044  0.477
2018 Maksimov A, Diesmann M, van Albada SJ. Criteria on Balance, Stability, and Excitability in Cortical Networks for Constraining Computational Models. Frontiers in Computational Neuroscience. 12: 44. PMID 30042668 DOI: 10.3389/fncom.2018.00044  0.373
2018 Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. Corrigendum: Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in Neuroinformatics. 12: 34. PMID 30008668 DOI: 10.3389/Fninf.2018.00034  0.509
2018 van Albada SJ, Rowley AG, Senk J, Hopkins M, Schmidt M, Stokes AB, Lester DR, Diesmann M, Furber SB. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. Frontiers in Neuroscience. 12: 291. PMID 29875620 DOI: 10.3389/Fnins.2018.00291  0.485
2018 Denker M, Zehl L, Kilavik BE, Diesmann M, Brochier T, Riehle A, Grün S. LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns. Scientific Reports. 8: 5200. PMID 29581430 DOI: 10.1038/S41598-018-22990-7  0.566
2018 Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M, Kunkel S. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in Neuroinformatics. 12: 2. PMID 29503613 DOI: 10.3389/Fninf.2018.00002  0.52
2018 Bouchard KE, Aimone JB, Chun M, Dean T, Denker M, Diesmann M, Donofrio DD, Frank LM, Kasthuri N, Koch C, Rubel O, Simon HD, Sommer FT, Prabhat. International Neuroscience Initiatives through the Lens of High-Performance Computing Ieee Computer. 51: 50-59. DOI: 10.1109/Mc.2018.2141039  0.375
2017 Krishnan J, Porta Mana P, Helias M, Diesmann M, Di Napoli E. Perfect Detection of Spikes in the Linear Sub-threshold Dynamics of Point Neurons. Frontiers in Neuroinformatics. 11: 75. PMID 29379430 DOI: 10.3389/Fninf.2017.00075  0.47
2017 Schmidt M, Bakker R, Hilgetag CC, Diesmann M, van Albada SJ. Multi-scale account of the network structure of macaque visual cortex. Brain Structure & Function. PMID 29143946 DOI: 10.1007/S00429-017-1554-4  0.426
2017 Hahne J, Dahmen D, Schuecker J, Frommer A, Bolten M, Helias M, Diesmann M. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator. Frontiers in Neuroinformatics. 11: 34. PMID 28596730 DOI: 10.3389/Fninf.2017.00034  0.508
2017 Ippen T, Eppler JM, Plesser HE, Diesmann M. Constructing Neuronal Network Models in Massively Parallel Environments. Frontiers in Neuroinformatics. 11: 30. PMID 28559808 DOI: 10.3389/Fninf.2017.00030  0.811
2017 Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome. Plos Computational Biology. 13: e1005179. PMID 28146554 DOI: 10.1371/Journal.Pcbi.1005179  0.492
2017 Newton AJH, Seidenstein AH, McDougal RA, Pérez-Cervera A, Huguet G, M-Seara T, Haimerl C, Angulo-Garcia D, Torcini A, Cossart R, Malvache A, Skiker K, Maouene M, Ragognetti G, Lorusso L, ... ... Diesmann M, et al. 26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Bmc Neuroscience. 18. DOI: 10.1186/S12868-017-0372-1  0.759
2017 Rubchinsky LL, Ahn S, Klijn W, Cumming B, Yates S, Karakasis V, Peyser A, Woodman M, Diaz-Pier S, Deraeve J, Vassena E, Alexander W, Beeman D, Kudela P, Boatman-Reich D, ... ... Diesmann M, et al. 26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2 Bmc Neuroscience. 18. DOI: 10.1186/S12868-017-0371-2  0.592
2016 Bouchard KE, Aimone JB, Chun M, Dean T, Denker M, Diesmann M, Donofrio DD, Frank LM, Kasthuri N, Koch C, Ruebel O, Simon HD, Sommer FT, Prabhat. High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination. Neuron. 92: 628-631. PMID 27810006 DOI: 10.1016/J.Neuron.2016.10.035  0.315
2016 Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, Grün S, Diesmann M, Einevoll GT. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks. Cerebral Cortex (New York, N.Y. : 1991). PMID 27797828 DOI: 10.1093/Cercor/Bhw237  0.724
2016 Bos H, Diesmann M, Helias M. Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit. Plos Computational Biology. 12: e1005132. PMID 27736873 DOI: 10.1371/Journal.Pcbi.1005132  0.432
2016 Sharpee TO, Destexhe A, Kawato M, Sekulić V, Skinner FK, Wójcik DK, Chintaluri C, Cserpán D, Somogyvári Z, Kim JK, Kilpatrick ZP, Bennett MR, Josić K, Elices I, Arroyo D, ... ... Diesmann M, et al. 25th Annual Computational Neuroscience Meeting: CNS-2016 Bmc Neuroscience. 17: 54. PMID 27534393 DOI: 10.1186/S12868-016-0283-6  0.753
2016 Grytskyy D, Diesmann M, Helias M. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality. Physical Review. E. 93: 062303. PMID 27415276 DOI: 10.1103/Physreve.93.062303  0.417
2016 Pfeil T, Jordan J, Tetzlaff T, Grübl A, Schemmel J, Diesmann M, Meier K. Effect of heterogeneity on decorrelation mechanisms in spiking neural networks: A neuromorphic-hardware study Physical Review X. 6. DOI: 10.1103/Physrevx.6.021023  0.537
2015 Schuecker J, Diesmann M, Helias M. Modulated escape from a metastable state driven by colored noise. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 92: 052119. PMID 26651659 DOI: 10.1103/Physreve.92.052119  0.358
2015 Trengove C, Diesmann M, Leeuwen CV. Dynamic effective connectivity in cortically embedded systems of recurrently coupled synfire chains. Journal of Computational Neuroscience. PMID 26560334 DOI: 10.1007/S10827-015-0581-5  0.435
2015 Hahne J, Helias M, Kunkel S, Igarashi J, Bolten M, Frommer A, Diesmann M. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Frontiers in Neuroinformatics. 9: 22. PMID 26441628 DOI: 10.3389/Fninf.2015.00022  0.54
2015 van Albada SJ, Helias M, Diesmann M. Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations. Plos Computational Biology. 11: e1004490. PMID 26325661 DOI: 10.1371/Journal.Pcbi.1004490  0.511
2015 Muller E, Bednar JA, Diesmann M, Gewaltig MO, Hines M, Davison AP. Python in neuroscience. Frontiers in Neuroinformatics. 9: 11. PMID 25926788 DOI: 10.3389/Fninf.2015.00011  0.744
2015 Bos H, Schuecker J, Diesmann M, Helias M. Identifying and exploiting the anatomical origin of population rate oscillations in multi-layered spiking networks Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P97  0.451
2015 Grytskyy D, Diesmann M, Helias M. Functional consequences of non-equilibrium dynamics caused by antisymmetric and symmetric learning rules Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-P96  0.447
2015 Jordan J, Tetzlaff T, Petrovici M, Breitwieser O, Bytschok I, Bill J, Schemmel J, Meier K, Diesmann M. Deterministic neural networks as sources of uncorrelated noise for probabilistic computations Bmc Neuroscience. 16: P62. DOI: 10.1186/1471-2202-16-S1-P62  0.394
2015 Trengove C, Leeuwen Cv, Diesmann M. Effective connectivity analysis explains metastable states of ongoing activity in cortically embedded systems of coupled synfire chains Bmc Neuroscience. 16: 61. DOI: 10.1186/1471-2202-16-S1-P61  0.42
2015 van Albada SJ, Helias M, Diesmann M. Limits to the scalability of cortical network models Bmc Neuroscience. 16. DOI: 10.1186/1471-2202-16-S1-O1  0.52
2014 Kunkel S, Schmidt M, Eppler JM, Plesser HE, Masumoto G, Igarashi J, Ishii S, Fukai T, Morrison A, Diesmann M, Helias M. Spiking network simulation code for petascale computers. Frontiers in Neuroinformatics. 8: 78. PMID 25346682 DOI: 10.3389/Fninf.2014.00078  0.811
2014 Helias M, Tetzlaff T, Diesmann M. The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. Plos Computational Biology. 10: e1003428. PMID 24453955 DOI: 10.1371/Journal.Pcbi.1003428  0.518
2014 Potjans TC, Diesmann M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex (New York, N.Y. : 1991). 24: 785-806. PMID 23203991 DOI: 10.1093/Cercor/Bhs358  0.436
2014 Schuecker J, Diesmann M, Helias M. The transfer function of the LIF model: from white to filtered noise Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P146  0.389
2013 Kriener B, Helias M, Rotter S, Diesmann M, Einevoll GT. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime. Frontiers in Computational Neuroscience. 7: 187. PMID 24501591 DOI: 10.1186/1471-2202-14-S1-P123  0.829
2013 Wagatsuma N, Potjans TC, Diesmann M, Sakai K, Fukai T. Spatial and feature-based attention in a layered cortical microcircuit model. Plos One. 8: e80788. PMID 24324628 DOI: 10.1371/Journal.Pone.0080788  0.362
2013 Grytskyy D, Tetzlaff T, Diesmann M, Helias M. A unified view on weakly correlated recurrent networks. Frontiers in Computational Neuroscience. 7: 131. PMID 24151463 DOI: 10.3389/Fncom.2013.00131  0.447
2013 Abeles M, Diesmann M, Flash T, Geisel T, Herrmann M, Teicher M. Compositionality in neural control: an interdisciplinary study of scribbling movements in primates. Frontiers in Computational Neuroscience. 7: 103. PMID 24062679 DOI: 10.3389/Fncom.2013.00103  0.315
2013 Vlachos A, Helias M, Becker D, Diesmann M, Deller T. NMDA-receptor inhibition increases spine stability of denervated mouse dentate granule cells and accelerates spine density recovery following entorhinal denervation in vitro. Neurobiology of Disease. 59: 267-76. PMID 23932917 DOI: 10.1016/J.Nbd.2013.07.018  0.382
2013 Schultze-Kraft M, Diesmann M, Grün S, Helias M. Noise suppression and surplus synchrony by coincidence detection. Plos Computational Biology. 9: e1002904. PMID 23592953 DOI: 10.1371/Journal.Pcbi.1002904  0.705
2013 Trengove C, van Leeuwen C, Diesmann M. High-capacity embedding of synfire chains in a cortical network model. Journal of Computational Neuroscience. 34: 185-209. PMID 22878688 DOI: 10.1007/S10827-012-0413-9  0.424
2013 Grytskyy D, Tetzlaff T, Diesmann M, Helias M. Noise decouples covariances from interaction strength Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P164  0.505
2013 Kunkel S, Schmidt M, Eppler JM, Plesser HE, Igarashi J, Masumoto G, Fukai T, Ishii S, Morrison A, Diesmann M, Helias M. From laptops to supercomputers: a single highly scalable code base for spiking neuronal network simulations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P163  0.816
2013 Denker M, Riehle A, Diesmann M, Grün S. Relating excess spike synchrony to LFP-locked firing rates modulations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P150  0.677
2013 Hagen E, Stavrinou ML, Linden H, Tetzlaff T, van Albada S, Dahmen D, Diesmann M, Gruen S, Einevoll GT. Hybrid scheme for modeling LFPs from spiking cortical network models Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P119  0.561
2013 Helias M, Tetzlaff T, Diesmann M. Recurrence and external sources differentially shape network correlations Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P113  0.493
2013 van Albada SJ, Schrader S, Helias M, Diesmann M. Influence of different types of downscaling on a cortical microcircuit model Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P112  0.533
2013 Schmidt M, van Albada S, Bakker R, Diesmann M. Integrating multi-scale data for a network model of macaque visual cortex Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P111  0.447
2013 Nowke C, Hentschel B, Kuhlen T, Schmidt M, van Albada SJ, Eppler JM, Bakker R, Diesmann M. Interactive visualization of brain-scale spiking activity Bmc Neuroscience. 14. DOI: 10.1186/1471-2202-14-S1-P110  0.79
2013 Helias M, Tetzlaff T, Diesmann M. Echoes in correlated neural systems New Journal of Physics. 15. DOI: 10.1088/1367-2630/15/2/023002  0.518
2012 Bakker R, Wachtler T, Diesmann M. CoCoMac 2.0 and the future of tract-tracing databases. Frontiers in Neuroinformatics. 6: 30. PMID 23293600 DOI: 10.3389/Fninf.2012.00030  0.34
2012 Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of neural-network activity by inhibitory feedback. Plos Computational Biology. 8: e1002596. PMID 23133368 DOI: 10.1371/Journal.Pcbi.1002596  0.503
2012 Helias M, Kunkel S, Masumoto G, Igarashi J, Eppler JM, Ishii S, Fukai T, Morrison A, Diesmann M. Supercomputers ready for use as discovery machines for neuroscience. Frontiers in Neuroinformatics. 6: 26. PMID 23129998 DOI: 10.3389/Fninf.2012.00026  0.803
2012 Deger M, Helias M, Rotter S, Diesmann M. Spike-timing dependence of structural plasticity explains cooperative synapse formation in the neocortex. Plos Computational Biology. 8: e1002689. PMID 23028287 DOI: 10.1371/Journal.Pcbi.1002689  0.578
2012 Pfeil T, Potjans TC, Schrader S, Potjans W, Schemmel J, Diesmann M, Meier K. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware. Frontiers in Neuroscience. 6: 90. PMID 22822388 DOI: 10.3389/Fnins.2012.00090  0.401
2012 Gerstein GL, Williams ER, Diesmann M, Grün S, Trengove C. Detecting synfire chains in parallel spike data. Journal of Neuroscience Methods. 206: 54-64. PMID 22361572 DOI: 10.1016/J.Jneumeth.2012.02.003  0.796
2012 Grytskyy D, Helias M, Tetzlaff T, Diesmann M. Taming the model zoo: a unified view on correlations in recurrent networks Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P147  0.504
2011 Kunkel S, Potjans TC, Eppler JM, Plesser HE, Morrison A, Diesmann M. Meeting the memory challenges of brain-scale network simulation. Frontiers in Neuroinformatics. 5: 35. PMID 22291636 DOI: 10.3389/Fninf.2011.00035  0.805
2011 Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT. Modeling the spatial reach of the LFP. Neuron. 72: 859-72. PMID 22153380 DOI: 10.1016/J.Neuron.2011.11.006  0.674
2011 Ishii S, Diesmann M, Doya K. Multi-scale, multi-modal neural modeling and simulation. Neural Networks : the Official Journal of the International Neural Network Society. 24: 917. PMID 21840687 DOI: 10.1016/J.Neunet.2011.07.004  0.361
2011 Wagatsuma N, Potjans TC, Diesmann M, Fukai T. Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model. Frontiers in Computational Neuroscience. 5: 31. PMID 21779240 DOI: 10.3389/Fncom.2011.00031  0.344
2011 Brüderle D, Petrovici MA, Vogginger B, Ehrlich M, Pfeil T, Millner S, Grübl A, Wendt K, Müller E, Schwartz MO, de Oliveira DH, Jeltsch S, Fieres J, Schilling M, Müller P, ... ... Diesmann M, et al. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biological Cybernetics. 104: 263-96. PMID 21618053 DOI: 10.1007/S00422-011-0435-9  0.696
2011 Potjans W, Diesmann M, Morrison A. An imperfect dopaminergic error signal can drive temporal-difference learning. Plos Computational Biology. 7: e1001133. PMID 21589888 DOI: 10.1371/Journal.Pcbi.1001133  0.363
2011 Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The local field potential reflects surplus spike synchrony. Cerebral Cortex (New York, N.Y. : 1991). 21: 2681-95. PMID 21508303 DOI: 10.1093/Cercor/Bhr040  0.693
2011 Helias M, Deger M, Rotter S, Diesmann M. Finite post synaptic potentials cause a fast neuronal response. Frontiers in Neuroscience. 5: 19. PMID 21427776 DOI: 10.3389/Fnins.2011.00019  0.641
2011 Kunkel S, Diesmann M, Morrison A. Limits to the development of feed-forward structures in large recurrent neuronal networks. Frontiers in Computational Neuroscience. 4: 160. PMID 21415913 DOI: 10.3389/Fncom.2010.00160  0.462
2011 Hanuschkin A, Diesmann M, Morrison A. A reafferent and feed-forward model of song syntax generation in the Bengalese finch. Journal of Computational Neuroscience. 31: 509-32. PMID 21404048 DOI: 10.1007/S10827-011-0318-Z  0.44
2011 von Kapri A, Rick T, Potjans TC, Diesmann M, Kuhlen T. Towards the visualization of spiking neurons in virtual reality. Studies in Health Technology and Informatics. 163: 685-7. PMID 21335880 DOI: 10.3233/978-1-60750-706-2-685  0.307
2011 Schrader S, Diesmann M, Morrison A. A compositionality machine realized by a hierarchic architecture of synfire chains. Frontiers in Computational Neuroscience. 4: 154. PMID 21258641 DOI: 10.3389/Fncom.2010.00154  0.356
2011 Hanuschkin A, Herrmann JM, Morrison A, Diesmann M. Compositionality of arm movements can be realized by propagating synchrony. Journal of Computational Neuroscience. 30: 675-97. PMID 20953686 DOI: 10.1007/S10827-010-0285-9  0.381
2011 Potjans TC, Diesmann M. Robustness vs. flexibility: how do external inputs shape the activity in a data-based layered cortical network model? Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P74  0.422
2011 Helias M, Tetzlaff T, Diesmann M. Towards a unified theory of correlations in recurrent neural networks Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P73  0.516
2011 Bakker R, Potjans TC, Wachtler T, Diesmann M. Macaque structural connectivity revisited: CoCoMac 2.0 Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P72  0.392
2011 Kunkel S, Helias M, Diesmann M, Morrison A. Fail-safe detection of threshold crossings of linear integrate-and-fire neuron models in time-driven simulations Bmc Neuroscience. 12: 229. DOI: 10.1186/1471-2202-12-S1-P229  0.477
2011 Schultze-Kraft M, Diesmann M, Grün S, Helias M. Correlation transmission of spiking neurons is boosted by synchronous input Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P144  0.715
2011 Denker M, Davison A, Diesmann M, Grün S. Towards guiding principles in workflow design to facilitate collaborative projects involving massively parallel electrophysiological data Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P131  0.614
2011 Wagatsuma N, Potjans TC, Diesmann M, Fukai T. Layer dependent neural modulation of a realistic layered-microcircuit model in visual cortex based on bottom-up and top-down signals Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-P114  0.387
2011 Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT. How local is the local field potential? Bmc Neuroscience. 12. DOI: 10.1186/1471-2202-12-S1-O8  0.652
2010 Potjans W, Morrison A, Diesmann M. Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Frontiers in Computational Neuroscience. 4: 141. PMID 21151370 DOI: 10.3389/Fncom.2010.00141  0.501
2010 Louis S, Gerstein GL, Grün S, Diesmann M. Surrogate spike train generation through dithering in operational time. Frontiers in Computational Neuroscience. 4: 127. PMID 21060802 DOI: 10.3389/Fncom.2010.00127  0.782
2010 Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in Neuroinformatics. 4: 113. PMID 21031031 DOI: 10.3389/Fninf.2010.00113  0.454
2010 Helias M, Deger M, Rotter S, Diesmann M. Instantaneous non-linear processing by pulse-coupled threshold units. Plos Computational Biology. 6. PMID 20856583 DOI: 10.1371/Journal.Pcbi.1000929  0.625
2010 Denker M, Riehle A, Diesmann M, Grün S. Estimating the contribution of assembly activity to cortical dynamics from spike and population measures. Journal of Computational Neuroscience. 29: 599-613. PMID 20480218 DOI: 10.1186/1471-2202-10-S1-P231  0.678
2010 Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Kotaleski JH, Ekeberg O. Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics. 8: 43-60. PMID 20195795 DOI: 10.1007/S12021-010-9064-Z  0.81
2010 Helias M, Deger M, Diesmann M, Rotter S. Equilibrium and Response Properties of the Integrate-and-Fire Neuron in Discrete Time. Frontiers in Computational Neuroscience. 3: 29. PMID 20130755 DOI: 10.3389/Neuro.10.029.2009  0.653
2010 Helias M, Tetzlaff T, Diesmann M. Neurons hear their echo Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P47  0.509
2010 Denker M, Riehle A, Diesmann M, Grün S. Phase locking between excess spike synchrony and LFP is independent of rate covariation Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P4  0.701
2010 Hanuschkin A, Diesmann M, Morrison A. A reafferent model of song syntax generation in the Bengalese finch Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P33  0.435
2010 Kunkel S, Diesmann M, Morrison A. Random wiring limits the development of functional structure in large recurrent neuronal networks Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P108  0.47
2010 Grün S, Borgelt C, Gerstein G, Louis S, Diesmann M. Selecting appropriate surrogate methods for spike correlation analysis Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-O15  0.804
2010 Tetzlaff T, Helias M, Einevoll GT, Diesmann M. Decorrelation of low-frequency neural activity by inhibitory feedback Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-O11  0.504
2010 Trengove C, Van Leeuwen C, Diesmann M. High storage capacity of synfire chains in large-scale cortical networks of conductance-based spiking neurons Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-F1  0.426
2010 Gruen S, Louis S, Gerstein G, Diesmann M. Surrogates for spike correlation analysis through dithering in operational time Neuroscience Research. 68: e51. DOI: 10.1016/J.Neures.2010.07.472  0.719
2010 Diesmann M. Supercomputers as data integration facilities: brain-scale simulations Neuroscience Research. 68: e31. DOI: 10.1016/J.Neures.2010.07.379  0.308
2010 Denker M, Riehle A, Diesmann M, Grün S. Distinguishing the effects of firing rate co-modulation and excess spike synchrony on the spike–LFP relationship Neuroscience Research. 68: e438. DOI: 10.1016/J.Neures.2010.07.1941  0.613
2009 Plesser HE, Diesmann M. Simplicity and efficiency of integrate-and-fire neuron models. Neural Computation. 21: 353-9. PMID 19431263 DOI: 10.1162/Neco.2008.03-08-731  0.533
2009 Potjans W, Morrison A, Diesmann M. A spiking neural network model of an actor-critic learning agent. Neural Computation. 21: 301-39. PMID 19196231 DOI: 10.1162/Neco.2008.08-07-593  0.377
2009 Tetzlaff T, Einevoll GT, Diesmann M. Synchronization and rate dynamics in embedded synfire chains: effect of network heterogeneity and feedback Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P258  0.475
2009 Schwalger T, Goedeke S, Diesmann M. Bifurcation analysis of synchronization dynamics in cortical feed-forward networks in novel coordinates Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P256  0.392
2009 Berger D, Borgelt C, Diesmann M, Gerstein G, Grün S. An accretion based data mining algorithm for identification of sets of correlated neurons Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P254  0.788
2009 Helias M, Deger M, Diesmann M, Rotter S. Finite synaptic potentials cause a non-linear instantaneous response of the integrate-and-fire model Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P225  0.606
2009 Lindén H, Pettersen KH, Tetzlaff T, Potjans T, Denker M, Diesmann M, Grün S, Einevoll GT. Estimating the spatial range of local field potentials in a cortical population model Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P224  0.564
2009 Potjans TC, Fukai T, Diesmann M. Implications of the specific cortical circuitry for the network dynamics of a layered cortical network model Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P159  0.389
2009 Potjansu W, Morrison A, Diesmann M. A spiking temporal-difference learning model based on dopamine-modulated plasticity Bmc Neuroscience. 10. DOI: 10.1186/1471-2202-10-S1-P140  0.321
2009 Morrison A, Potjans TC, Kunkel S, Diesmann M. Towards large-scale neuronal network simulations on peta-scale computers Neuroscience Research. 65: S133. DOI: 10.1016/J.Neures.2009.09.650  0.47
2009 Potjans TC, Diesmann M. Target-specific connectivity enhances the stability of activity dynamics in a layered cortical network model Neuroscience Research. 65: S109. DOI: 10.1016/J.Neures.2009.09.496  0.367
2009 Diesmann M, Helias M, Deger M, Rotter S. The non-linear response of the integrate-and-fire neuron to finite synaptic potentials Neuroscience Research. 65: S78. DOI: 10.1016/J.Neures.2009.09.290  0.59
2008 Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in Neuroinformatics. 2: 12. PMID 19198667 DOI: 10.3389/Neuro.11.012.2008  0.814
2008 Helias M, Rotter S, Gewaltig MO, Diesmann M. Structural plasticity controlled by calcium based correlation detection. helias@bccn.uni-freiburg.de. Frontiers in Computational Neuroscience. 2: 7. PMID 19129936 DOI: 10.3389/Neuro.10.007.2008  0.8
2008 Schrader S, Grün S, Diesmann M, Gerstein GL. Detecting synfire chain activity using massively parallel spike train recording. Journal of Neurophysiology. 100: 2165-76. PMID 18632888 DOI: 10.1152/Jn.01245.2007  0.826
2008 Pazienti A, Maldonado PE, Diesmann M, Grün S. Effectiveness of systematic spike dithering depends on the precision of cortical synchronization. Brain Research. 1225: 39-46. PMID 18547547 DOI: 10.1016/J.Brainres.2008.04.073  0.657
2008 Morrison A, Diesmann M, Gerstner W. Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics. 98: 459-78. PMID 18491160 DOI: 10.1007/S00422-008-0233-1  0.398
2008 Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S. Correlations and population dynamics in cortical networks. Neural Computation. 20: 2185-226. PMID 18439141 DOI: 10.1162/Neco.2008.02-07-474  0.838
2008 Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M. Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Neural Computation. 20: 2133-84. PMID 18439140 DOI: 10.1162/Neco.2008.05-07-525  0.714
2008 Potjans TC, Diesmann M. Integration of anatomical and physiological connectivity data sets for layered cortical network models Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P60  0.362
2008 Goedeke S, Schwalger T, Diesmann M. Theory of neuronal spike densities for synchronous activity in cortical feed-forward networks Bmc Neuroscience. 9: P143. DOI: 10.1186/1471-2202-9-S1-P143  0.534
2008 Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. Comparison of methods to calculate exact spike times in integrate-and-fire neurons with exponential currents Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P131  0.469
2008 Goedeke S, Diesmann M. The mechanism of synchronization in feed-forward neuronal networks New Journal of Physics. 10. DOI: 10.1088/1367-2630/10/1/015007  0.451
2008 Grün S, Abeles M, Diesmann M. Impact of higher-order correlations on coincidence distributions of massively parallel data Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 5286: 96-114. DOI: 10.1007/978-3-540-88853-6-8  0.518
2007 Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, et al. Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience. 23: 349-98. PMID 17629781 DOI: 10.1007/S10827-007-0038-6  0.473
2007 Morrison A, Aertsen A, Diesmann M. Spike-timing-dependent plasticity in balanced random networks. Neural Computation. 19: 1437-67. PMID 17444756 DOI: 10.1162/Neco.2007.19.6.1437  0.67
2007 Morrison A, Straube S, Plesser HE, Diesmann M. Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation. 19: 47-79. PMID 17134317 DOI: 10.1162/Neco.2007.19.1.47  0.732
2007 Gewaltig M, Diesmann M. NEST (NEural Simulation Tool) Scholarpedia. 2: 1430. DOI: 10.4249/Scholarpedia.1430  0.793
2007 Helias M, Rotter S, Gewaltig M, Diesmann M. A model for correlation detection based on Ca2+concentration in spines Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P192  0.808
2007 Gruen S, Pazienti A, Diesmann M. Effectiveness of dithering to destroy spike coincidences Neuroscience Research. 58: S54. DOI: 10.1016/J.Neures.2007.06.317  0.354
2007 Diesmann M, Gewaltig M, Morrison A, Plesser H. Large scale simulations of cortical neuronal networks Neuroscience Research. 58: S9. DOI: 10.1016/J.Neures.2007.06.045  0.513
2007 Pazienti A, Diesmann M, Grün S. Bounds of the ability to destroy precise coincidences by spike dithering Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4729: 428-437. DOI: 10.1007/978-3-540-75555-5_41  0.567
2007 Morrison A, Diesmann M. Maintaining causality in discrete time neuronal network simulations Understanding Complex Systems. 2008: 267-278. DOI: 10.1007/978-3-540-73159-7_10  0.429
2007 Plesser HE, Eppler JM, Morrison A, Diesmann M, Gewaltig MO. Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4641: 672-681.  0.814
2007 Eppler JM, Plesser HE, Morrison A, Diesmann M, Gewaltig MO. Multithreaded and distributed simulation of large biological neuronal networks Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 4757: 391-392.  0.822
2006 Guerrero-Rivera R, Morrison A, Diesmann M, Pearce TC. Programmable logic construction kits for hyper-real-time neuronal modeling. Neural Computation. 18: 2651-79. PMID 16999574 DOI: 10.1162/Neco.2006.18.11.2651  0.456
2005 Morrison A, Mehring C, Geisel T, Aertsen AD, Diesmann M. Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation. 17: 1776-801. PMID 15969917 DOI: 10.1162/0899766054026648  0.795
2004 Denker M, Timme M, Diesmann M, Wolf F, Geisel T. Breaking synchrony by heterogeneity in complex networks. Physical Review Letters. 92: 074103. PMID 14995855 DOI: 10.1103/Physrevlett.92.074103  0.386
2004 Tetzlaff T, Morrison A, Geisel T, Diesmann M. Consequences of realistic network size on the stability of embedded synfire chains Neurocomputing. 58: 117-121. DOI: 10.1016/J.Neucom.2004.01.031  0.439
2003 Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A. Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics. 88: 395-408. PMID 12750902 DOI: 10.1007/S00422-002-0384-4  0.802
2003 Grün S, Riehle A, Diesmann M. Effect of cross-trial nonstationarity on joint-spike events. Biological Cybernetics. 88: 335-51. PMID 12750896 DOI: 10.1007/S00422-002-0386-2  0.643
2003 Tetzlaff T, Buschermöhle M, Geisel T, Diesmann M. The spread of rate and correlation in stationary cortical networks Neurocomputing. 52: 949-954. DOI: 10.1016/S0925-2312(02)00854-8  0.502
2003 Pipa G, Diesmann M, Grün S. Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods Complexity. 8: 79-86. DOI: 10.1002/Cplx.10085  0.633
2002 Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M. MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. Journal of Neuroscience Methods. 117: 33-42. PMID 12084562 DOI: 10.1016/S0165-0270(02)00045-6  0.749
2002 Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: II. Nonstationary data. Neural Computation. 14: 81-119. PMID 11747535 DOI: 10.1162/089976602753284464  0.758
2002 Grün S, Diesmann M, Aertsen A. Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Computation. 14: 43-80. PMID 11747534 DOI: 10.1162/089976602753284455  0.751
2002 Tetzlaff T, Geisel T, Diesmann M. The ground state of cortical feed-forward networks Neurocomputing. 44: 673-678. DOI: 10.1016/S0925-2312(02)00456-3  0.496
2001 Gewaltig MO, Diesmann M, Aertsen A. Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Networks : the Official Journal of the International Neural Network Society. 14: 657-73. PMID 11665761 DOI: 10.1016/S0893-6080(01)00070-3  0.835
2001 Aertsen A, Diesmann M, Gewaltig MO, Grün S, Rotter S. Neural dynamics in cortical networks--precision of joint-spiking events. Novartis Foundation Symposium. 239: 193-204; discussion . PMID 11529312 DOI: 10.1002/0470846674.Ch15  0.832
2001 Riehle A, Grammont F, Diesmann M, Grün S. Erratum to “Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation” [Journal of Physiology-Paris 94 (5–6) pp. 569–582 (2000)]☆ Journal of Physiology-Paris. 95: 499. DOI: 10.1016/S0928-4257(01)00092-4  0.58
2001 Gewaltig MO, Diesmann M, Aertsen A. Cortical synfire-activity: Configuration space and survival probability Neurocomputing. 38: 621-626. DOI: 10.1016/S0925-2312(01)00454-4  0.819
2001 Diesmann M, Gewaltig MO, Rotter S, Aertsen A. State space analysis of synchronous spiking in cortical neural networks Neurocomputing. 38: 565-571. DOI: 10.1016/S0925-2312(01)00409-X  0.84
2000 Riehle A, Grammont F, Diesmann M, Grün S. Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. Journal of Physiology, Paris. 94: 569-82. PMID 11165921 DOI: 10.1016/S0928-4257(00)01100-1  0.69
1999 Grün S, Diesmann M, Grammont F, Riehle A, Aertsen A. Detecting unitary events without discretization of time. Journal of Neuroscience Methods. 94: 67-79. PMID 10638816 DOI: 10.1016/S0165-0270(99)00126-0  0.721
1999 Rotter S, Diesmann M. Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics. 81: 381-402. PMID 10592015 DOI: 10.1007/S004220050570  0.64
1999 Diesmann M, Gewaltig MO, Aertsen A. Stable propagation of synchronous spiking in cortical neural networks. Nature. 402: 529-33. PMID 10591212 DOI: 10.1038/990101  0.844
1997 Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science (New York, N.Y.). 278: 1950-3. PMID 9395398 DOI: 10.1126/Science.278.5345.1950  0.719
1996 Aertsen A, Diesmann M, Gewaltig MO. Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology, Paris. 90: 243-7. PMID 9116676 DOI: 10.1016/S0928-4257(97)81432-5  0.829
1970 Diesmann M. Perspectives and challenges of large-scale neuronal network simulations Frontiers in Neuroinformatics. DOI: 10.3389/Conf.Neuro.11.2009.08.133  0.503
1970 Diesmann M, Einevoll G, Potjans T, Lindén H, Grün S. Modeling the local field potential by a large-scale layered cortical network model Frontiers in Neuroinformatics. DOI: 10.3389/Conf.Neuro.11.2009.08.046  0.363
1970 Diesmann M, Morrison A, Potjans T, Kunkel S. Simulating macroscale brain circuits with microscale resolution Frontiers in Neuroinformatics. DOI: 10.3389/Conf.Neuro.11.2009.08.044  0.394
1970 Diesmann M, Morrison A, Potjans W. Implementing neuromodulated plasticity in distributed simulations Frontiers in Neuroinformatics. DOI: 10.3389/Conf.Neuro.11.2009.08.043  0.312
Show low-probability matches.