Year |
Citation |
Score |
2000 |
Hall Z, Bloom FE, Fischbach G. Introduction. Where neuroscience has been and where it needs to go. Neurobiology of Disease. 7: 495-8. PMID 11042061 DOI: 10.1006/nbdi.2000.0337 |
0.442 |
|
1999 |
Fuhrer C, Gautam M, Sugiyama JE, Hall ZW. Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 19: 6405-16. PMID 10414969 DOI: 10.1523/Jneurosci.19-15-06405.1999 |
0.383 |
|
1999 |
Hall ZW. Alpha neurotoxins and their relatives: foes and friends? Neuron. 23: 4-5. PMID 10402186 DOI: 10.1016/S0896-6273(00)80745-X |
0.384 |
|
1999 |
Ramanathan VK, Hall ZW. Altered glycosylation sites of the delta subunit of the acetylcholine receptor (AChR) reduce alpha delta association and receptor assembly. The Journal of Biological Chemistry. 274: 20513-20. PMID 10400680 DOI: 10.1074/jbc.274.29.20513 |
0.389 |
|
1999 |
Wang ZZ, Mathias A, Gautam M, Hall ZW. Metabolic stabilization of muscle nicotinic acetylcholine receptor by rapsyn. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 19: 1998-2007. PMID 10066253 DOI: 10.1523/Jneurosci.19-06-01998.1999 |
0.476 |
|
1997 |
Fuhrer C, Sugiyama JE, Taylor RG, Hall ZW. Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle. The Embo Journal. 16: 4951-60. PMID 9305637 DOI: 10.1093/emboj/16.16.4951 |
0.443 |
|
1996 |
Wang ZZ, Fuhrer C, Shtrom S, Sugiyama JE, Ferns MJ, Hall ZW. The nicotinic acetylcholine receptor at the neuromuscular junction: assembly and tyrosine phosphorylation. Cold Spring Harbor Symposia On Quantitative Biology. 61: 363-71. PMID 9246465 DOI: 10.1101/Sqb.1996.061.01.039 |
0.349 |
|
1996 |
Fuhrer C, Hall ZW. Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. The Journal of Biological Chemistry. 271: 32474-81. PMID 8943314 DOI: 10.1074/jbc.271.50.32474 |
0.329 |
|
1996 |
Wang ZZ, Hardy SF, Hall ZW. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated alpha and delta subunits are required for heterodimer formation in vivo. The Journal of Biological Chemistry. 271: 27575-84. PMID 8910344 DOI: 10.1074/jbc.271.44.27575 |
0.359 |
|
1996 |
Wang ZZ, Hardy SF, Hall ZW. Membrane tethering enables an extracellular domain of the acetylcholine receptor alpha subunit to form a heterodimeric ligand-binding site. The Journal of Cell Biology. 135: 809-17. PMID 8909552 DOI: 10.1083/jcb.135.3.809 |
0.38 |
|
1996 |
Shtrom SS, Hall ZW. Formation of a ligand-binding site for the acetylcholine receptor in vitro. The Journal of Biological Chemistry. 271: 25506-14. PMID 8810322 DOI: 10.1074/jbc.271.41.25506 |
0.355 |
|
1996 |
Bowen DC, Sugiyama J, Ferns M, Hall ZW. Neural agrin activates a high-affinity receptor in C2 muscle cells that is unresponsive to muscle agrin. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 16: 3791-7. PMID 8656273 DOI: 10.1523/Jneurosci.16-12-03791.1996 |
0.528 |
|
1996 |
Bowen DC, Gordon H, Hall ZW. Altered glycosaminoglycan chain structure in a variant of the C2 mouse muscle cell line. Journal of Neurochemistry. 66: 2580-8. PMID 8632185 DOI: 10.1046/J.1471-4159.1996.66062580.X |
0.416 |
|
1996 |
Ferns M, Deiner M, Hall Z. Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation. The Journal of Cell Biology. 132: 937-44. PMID 8603924 DOI: 10.1083/jcb.132.5.937 |
0.349 |
|
1994 |
Yu XM, Hall ZW. The role of the cytoplasmic domains of individual subunits of the acetylcholine receptor in 43 kDa protein-induced clustering in COS cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 14: 785-95. PMID 8301361 DOI: 10.1523/Jneurosci.14-02-00785.1994 |
0.355 |
|
1994 |
Yu XM, Hall ZW. A sequence in the main cytoplasmic loop of the alpha subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor. Neuron. 13: 247-55. PMID 8043279 DOI: 10.1016/0896-6273(94)90473-1 |
0.351 |
|
1994 |
Sugiyama J, Bowen DC, Hall ZW. Dystroglycan binds nerve and muscle agrin. Neuron. 13: 103-15. PMID 8043271 DOI: 10.1016/0896-6273(94)90462-6 |
0.439 |
|
1994 |
Fallon JR, Hall ZW. Building synapses: agrin and dystroglycan stick together. Trends in Neurosciences. 17: 469-73. PMID 7531888 DOI: 10.1016/0166-2236(94)90135-X |
0.452 |
|
1993 |
Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell. 72: 99-121. PMID 8428377 DOI: 10.1016/S0092-8674(05)80031-5 |
0.518 |
|
1993 |
Ferns MJ, Campanelli JT, Hoch W, Scheller RH, Hall Z. The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron. 11: 491-502. PMID 8398142 DOI: 10.1016/0896-6273(93)90153-I |
0.426 |
|
1993 |
Hoch W, Ferns M, Campanelli JT, Hall ZW, Scheller RH. Developmental regulation of highly active alternatively spliced forms of agrin. Neuron. 11: 479-90. PMID 8398141 DOI: 10.1016/0896-6273(93)90152-H |
0.377 |
|
1993 |
Gordon H, Lupa M, Bowen D, Hall Z. A muscle cell variant defective in glycosaminoglycan biosynthesis forms nerve-induced but not spontaneous clusters of the acetylcholine receptor and the 43 kDa protein. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 13: 586-95. PMID 8381169 DOI: 10.1523/Jneurosci.13-02-00586.1993 |
0.387 |
|
1993 |
Engel AG, Hutchinson DO, Nakano S, Murphy L, Griggs RC, Gu Y, Hall ZW, Lindstrom J. Myasthenic syndromes attributed to mutations affecting the epsilon subunit of the acetylcholine receptor. Annals of the New York Academy of Sciences. 681: 496-508. PMID 8357190 DOI: 10.1111/J.1749-6632.1993.Tb22933.X |
0.318 |
|
1993 |
Yoshihara CM, Hall ZW. Increased expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes. The Journal of Cell Biology. 122: 169-79. PMID 7686162 DOI: 10.1083/Jcb.122.1.169 |
0.416 |
|
1992 |
Hall ZW. Recognition domains in assembly of oligomeric membrane proteins. Trends in Cell Biology. 2: 66-8. PMID 14731931 DOI: 10.1016/0962-8924(92)90058-U |
0.36 |
|
1992 |
Chavez RA, Hall ZW. Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the alpha and delta subunits. The Journal of Cell Biology. 116: 385-93. PMID 1730761 DOI: 10.1083/Jcb.116.2.385 |
0.344 |
|
1992 |
Gordon H, Ralston E, Hall ZW. Cooperation between the products of different nuclei in hybrid myotubes produces localized acetylcholine receptor clusters. Proceedings of the National Academy of Sciences of the United States of America. 89: 6595-8. PMID 1631161 DOI: 10.1073/Pnas.89.14.6595 |
0.429 |
|
1992 |
Forsayeth JR, Gu Y, Hall ZW. BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. The Journal of Cell Biology. 117: 841-7. PMID 1577860 DOI: 10.1083/Jcb.117.4.841 |
0.396 |
|
1992 |
Verrall S, Hall ZW. The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell. 68: 23-31. PMID 1370654 DOI: 10.1016/0092-8674(92)90203-O |
0.386 |
|
1992 |
Ferns M, Hoch W, Campanelli JT, Rupp F, Hall ZW, Scheller RH. RNA splicing regulates agrin-mediated acetylcholine receptor clustering activity on cultured myotubes. Neuron. 8: 1079-86. PMID 1319184 DOI: 10.1016/0896-6273(92)90129-2 |
0.412 |
|
1991 |
Gu Y, Camacho P, Gardner P, Hall ZW. Identification of two amino acid residues in the epsilon subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells. Neuron. 6: 879-87. PMID 2054186 DOI: 10.1016/0896-6273(91)90228-R |
0.41 |
|
1991 |
Gu Y, Forsayeth JR, Verrall S, Yu XM, Hall ZW. Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. The Journal of Cell Biology. 114: 799-807. PMID 1869588 DOI: 10.1083/Jcb.114.4.799 |
0.375 |
|
1991 |
Yu XM, Hall ZW. Extracellular domains mediating epsilon subunit interactions of muscle acetylcholine receptor. Nature. 352: 64-7. PMID 1712080 DOI: 10.1038/352064a0 |
0.399 |
|
1990 |
Forsayeth JR, Franco A, Rossi AB, Lansman JB, Hall ZW. Expression of functional mouse muscle acetylcholine receptors in Chinese hamster ovary cells. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 10: 2771-9. PMID 2388086 DOI: 10.1523/Jneurosci.10-08-02771.1990 |
0.456 |
|
1990 |
Gu Y, Franco A, Gardner PD, Lansman JB, Forsayeth JR, Hall ZW. Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron. 5: 147-57. PMID 2383398 DOI: 10.1016/0896-6273(90)90305-Y |
0.419 |
|
1990 |
Burges J, Wray DW, Pizzighella S, Hall Z, Vincent A. A myasthenia gravis plasma immunoglobulin reduces miniature endplate potentials at human endplates in vitro. Muscle & Nerve. 13: 407-13. PMID 2345558 DOI: 10.1002/mus.880130507 |
0.417 |
|
1990 |
Lupa MT, Gordon H, Hall ZW. A specific effect of muscle cells on the distribution of presynaptic proteins in neurites and its absence in a C2 muscle cell variant. Developmental Biology. 142: 31-43. PMID 2121566 DOI: 10.1016/0012-1606(90)90148-C |
0.371 |
|
1990 |
Peterson CA, Gordon H, Hall ZW, Paterson BM, Blau HM. Negative control of the helix-loop-helix family of myogenic regulators in the NFB mutant. Cell. 62: 493-502. PMID 1696180 DOI: 10.1016/0092-8674(90)90014-6 |
0.365 |
|
1989 |
Gordon H, Hall ZW. Glycosaminoglycan variants in the C2 muscle cell line. Developmental Biology. 135: 1-11. PMID 2767331 DOI: 10.1016/0012-1606(89)90152-8 |
0.374 |
|
1989 |
Hall ZW, Ralston E. Nuclear domains in muscle cells. Cell. 59: 771-2. PMID 2686838 DOI: 10.1016/0092-8674(89)90597-7 |
0.31 |
|
1989 |
Gu Y, Ralston E, Murphy-Erdosh C, Black RA, Hall ZW. Acetylcholine receptor in a C2 muscle cell variant is retained in the endoplasmic reticulum. The Journal of Cell Biology. 109: 729-38. PMID 2668304 DOI: 10.1083/Jcb.109.2.729 |
0.401 |
|
1989 |
LaRochelle WJ, Ralston E, Forsayeth JR, Froehner SC, Hall ZW. Clusters of 43-kDa protein are absent from genetic variants of C2 muscle cells with reduced acetylcholine receptor expression. Developmental Biology. 132: 130-8. PMID 2645181 DOI: 10.1016/0012-1606(89)90211-X |
0.385 |
|
1989 |
Lupa MT, Hall ZW. Progressive restriction of synaptic vesicle protein to the nerve terminal during development of the neuromuscular junction. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 9: 3937-45. PMID 2511281 DOI: 10.1523/Jneurosci.09-11-03937.1989 |
0.323 |
|
1989 |
Ralston E, Hall ZW. Intracellular and surface distribution of a membrane protein (CD8) derived from a single nucleus in multinucleated myotubes. The Journal of Cell Biology. 109: 2345-52. PMID 2509483 DOI: 10.1083/Jcb.109.5.2345 |
0.301 |
|
1988 |
Gu Y, Hall ZW. Characterization of acetylcholine receptor subunits in developing and in denervated mammalian muscle. The Journal of Biological Chemistry. 263: 12878-85. PMID 3417640 |
0.336 |
|
1988 |
Gu Y, Hall ZW. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron. 1: 117-25. PMID 3272161 DOI: 10.1016/0896-6273(88)90195-X |
0.435 |
|
1987 |
Dowding AJ, Hall ZW. Monoclonal antibodies specific for each of the two toxin-binding sites of Torpedo acetylcholine receptor. Biochemistry. 26: 6372-81. PMID 3427011 DOI: 10.1021/Bi00394A010 |
0.323 |
|
1987 |
Hall ZW, Pizzighella S, Gu Y, Vicini S, Schuetze SM. Functional inhibition of acetylcholine receptors by antibodies in myasthenic sera. Annals of the New York Academy of Sciences. 505: 272-85. PMID 2446552 DOI: 10.1111/J.1749-6632.1987.Tb51296.X |
0.348 |
|
1987 |
Hall ZW. Three of a kind: the β-adrenergic receptor, the muscarinic acetylcholine receptor, and rhodopsin Trends in Neurosciences. 10: 99-101. DOI: 10.1016/0166-2236(87)90049-X |
0.361 |
|
1986 |
Hall ZW. A neuronal acetylcholine receptor subunit cloned Trends in Neurosciences. 9: 138-139. DOI: 10.1016/0166-2236(86)90044-5 |
0.346 |
|
1985 |
Gu Y, Silberstein L, Hall ZW. The effects of a myasthenic serum on the acetylcholine receptors of C2 myotubes. I. Immunological distinction between the two toxin-binding sites of the receptor. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 1909-16. PMID 4020425 DOI: 10.1523/Jneurosci.05-07-01909.1985 |
0.359 |
|
1985 |
Hall ZW, Gorin PD, Silberstein L, Bennett C. A postnatal change in the immunological properties of the acetylcholine receptor at rat muscle endplates. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 730-4. PMID 3973693 |
0.346 |
|
1985 |
Olwin BB, Hall ZW. Developmental regulation of laminin accumulation in the extracellular matrix of a mouse muscle cell line. Developmental Biology. 112: 359-67. PMID 3908195 DOI: 10.1016/0012-1606(85)90407-5 |
0.335 |
|
1985 |
Young EF, Ralston E, Blake J, Ramachandran J, Hall ZW, Stroud RM. Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proceedings of the National Academy of Sciences of the United States of America. 82: 626-30. PMID 3881770 DOI: 10.1073/Pnas.82.2.626 |
0.377 |
|
1985 |
Black RA, Hall ZW. Use of a replica technique to isolate muscle cell lines defective in expressing the acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America. 82: 124-8. PMID 3855534 DOI: 10.1073/Pnas.82.1.124 |
0.42 |
|
1985 |
Inestrosa NC, Matthew WD, Reiness CG, Hall ZW, Reichardt LF. Atypical distribution of asymmetric acetylcholinesterase in mutant PC12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan. Journal of Neurochemistry. 45: 86-94. PMID 3158721 DOI: 10.1111/j.1471-4159.1985.tb05478.x |
0.496 |
|
1985 |
Schuetze SM, Vicini S, Hall ZW. Myasthenic serum selectively blocks acetylcholine receptors with long channel open times at developing rat endplates. Proceedings of the National Academy of Sciences of the United States of America. 82: 2533-7. PMID 2581249 DOI: 10.1073/Pnas.82.8.2533 |
0.309 |
|
1985 |
Maricq AV, Gu Y, Hestrin S, Hall Z. The effects of a myasthenic serum on the acetylcholine receptors of C2 myotubes. II. Functional inactivation of the receptor. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 5: 1917-24. PMID 2410577 DOI: 10.1523/Jneurosci.05-07-01917.1985 |
0.36 |
|
1984 |
Miller JB, Hall ZW. Acetylcholine receptors from Torpedo californica membrane vesicles are metabolized after fusion with cultured mammalian muscle cells. Brain Research. 295: 227-31. PMID 6713185 DOI: 10.1016/0006-8993(84)90971-5 |
0.436 |
|
1984 |
Ziskind-Conhaim L, Geffen I, Hall ZW. Redistribution of acetylcholine receptors on developing rat myotubes. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 4: 2346-9. PMID 6481451 |
0.351 |
|
1984 |
Ziskind-Conhaim L, Inestrosa NC, Hall ZW. Acetylcholinesterase is functional in embryonic rat muscle before its accumulation at the sites of nerve-muscle contact. Developmental Biology. 103: 369-77. PMID 6202574 DOI: 10.1016/0012-1606(84)90325-7 |
0.6 |
|
1983 |
Inestrosa NC, Miller JB, Silberstein L, Ziskind-Conhaim L, Hall ZW. Developmental regulation of 16S acetylcholinesterase and acetylcholine receptors in a mouse muscle cell line. Experimental Cell Research. 147: 393-405. PMID 6617773 DOI: 10.1016/0014-4827(83)90221-5 |
0.603 |
|
1983 |
Bloch RJ, Hall ZW. Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. The Journal of Cell Biology. 97: 217-23. PMID 6408100 DOI: 10.1083/jcb.97.1.217 |
0.332 |
|
1982 |
Silberstein L, Inestrosa NC, Hall ZW. Aneural muscle cell cultures make synaptic basal lamina components. Nature. 295: 143-5. PMID 7035963 DOI: 10.1038/295143a0 |
0.582 |
|
1982 |
Inestrosa NC, Silberstein L, Hall ZW. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell. 29: 71-9. PMID 6286145 DOI: 10.1016/0092-8674(82)90091-5 |
0.553 |
|
1981 |
Weinberg CB, Sanes JR, Hall ZW. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina. Developmental Biology. 84: 255-66. PMID 20737863 DOI: 10.1016/0012-1606(81)90393-6 |
0.79 |
|
1981 |
Inestrosa NC, Reiness CG, Reichardt LF, Hall ZW. Cellular localization of the molecular forms of acetylcholinesterase in rat pheochromocytoma PC12 cells treated with nerve growth factor. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 1: 1260-7. PMID 7310486 DOI: 10.1523/Jneurosci.01-11-01260.1981 |
0.496 |
|
1981 |
Weinberg CB, Reiness CG, Hall ZW. Topographical segregation of old and new acetylcholine receptors at developing ectopic endplates in adult rat muscle. The Journal of Cell Biology. 88: 215-8. PMID 7204488 DOI: 10.1083/Jcb.88.1.215 |
0.767 |
|
1981 |
Reiness CG, Hall ZW. The developmental change in immunological properties of the acetylcholine receptor in rat muscle. Developmental Biology. 81: 324-31. PMID 6162693 DOI: 10.1016/0012-1606(81)90295-5 |
0.516 |
|
1980 |
Nathanson NM, Hall ZW. In situ labeling of Torpedo and rat muscle acetylcholine receptor by a photoaffinity derivative of alpha-bungarotoxin. The Journal of Biological Chemistry. 255: 1698-703. PMID 7354049 |
0.623 |
|
1979 |
Nathanson NM, Hall ZW. Subunit structure and peptide mapping of junctional and extrajunctional acetylcholine receptors from rat muscle. Biochemistry. 18: 3392-401. PMID 465480 DOI: 10.1021/Bi00582A028 |
0.641 |
|
1979 |
Weinberg CB, Hall ZW. Junctional form of acetylcholinesterase restored at nerve-free endplates. Developmental Biology. 68: 631-5. PMID 437344 DOI: 10.1016/0012-1606(79)90233-1 |
0.745 |
|
1979 |
Sanes JR, Hall ZW. Antibodies that bind specifically to synaptic sites on muscle fiber basal lamina. The Journal of Cell Biology. 83: 357-70. PMID 91619 DOI: 10.1083/Jcb.83.2.357 |
0.578 |
|
1979 |
Weinberg CB, Hall ZW. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proceedings of the National Academy of Sciences of the United States of America. 76: 504-8. PMID 85302 |
0.77 |
|
1978 |
Reiness CG, Weinberg CB, Hall ZW. Antibody to acetylcholine receptor increases degradation of junctional and extrajunctional receptors in adult muscle. Nature. 274: 68-70. PMID 661996 DOI: 10.1038/274068A0 |
0.786 |
|
1977 |
Reiness CG, Hogan PG, Marshall JM, Hall ZW. Factors influencing degradation of extrajunctional acetylcholine receptors in skeletal muscle. Progress in Clinical and Biological Research. 15: 207-15. PMID 928452 |
0.393 |
|
1977 |
Froehner SC, Reiness CG, Hall ZW. Subunit structure of the acetylcholine receptor from denervated rat skeletal muscle. The Journal of Biological Chemistry. 252: 8589-96. PMID 925013 |
0.419 |
|
1977 |
Hall ZW, Reiness CG. Electrical stimulation of denervated muscles reduces incorporation of methionine into the ACh receptor. Nature. 268: 655-7. PMID 895863 DOI: 10.1038/268655a0 |
0.354 |
|
1977 |
Froehner SC, Karlin A, Hall ZW. Affinity alkylation labels two subunits of the reduced acetylcholine receptor from mammalian muscle. Proceedings of the National Academy of Sciences of the United States of America. 74: 4685-8. PMID 270707 |
0.399 |
|
1976 |
Hogan PG, Marshall JM, Hall ZW. Muscle activity decreases rate of degradation of alpha-bungarotoxin bound to extrajunctional acetylcholine receptors. Nature. 261: 328-30. PMID 1272409 DOI: 10.1038/261328a0 |
0.371 |
|
1976 |
Brockes JP, Berg DK, Hall ZW. The biochemical properties and regulation of acetylcholine receptors in normal and denervated muscle. Cold Spring Harbor Symposia On Quantitative Biology. 40: 253-62. PMID 1065528 DOI: 10.1101/Sqb.1976.040.01.026 |
0.756 |
|
1975 |
Berg DK, Hall ZW. Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture. The Journal of Physiology. 252: 771-89. PMID 1206575 DOI: 10.1113/jphysiol.1975.sp011169 |
0.66 |
|
1975 |
Brockes JP, Hall ZW. Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors. Biochemistry. 14: 2100-6. PMID 1148161 DOI: 10.1021/Bi00681A009 |
0.682 |
|
1975 |
Brockes JP, Hall ZW. Acetylcholine receptors in normal and denervated rat diaphragm muscle. I. Purification and interaction with [125I]-alpha-bungarotoxin. Biochemistry. 14: 2092-9. PMID 1148160 DOI: 10.1021/Bi00681A008 |
0.672 |
|
1975 |
Brockes JP, Hall ZW. Synthesis of acetylcholine receptor by denervated rat diaphragm muscle. Proceedings of the National Academy of Sciences of the United States of America. 72: 1368-72. PMID 1055412 DOI: 10.1073/Pnas.72.4.1368 |
0.694 |
|
1975 |
Berg DK, Hall ZW. Increased extrajunctional acetylcholine sensitivity produced by chronic acetylcholine sensitivity produced by chronic post-synaptic neuromuscular blockade. The Journal of Physiology. 244: 659-76. PMID 166159 DOI: 10.1113/jphysiol.1975.sp010818 |
0.62 |
|
1975 |
Brockes JP, Hall ZW. Acetylcholine receptors in normal and denervated muscle Biophysical Journal. 15: II. |
0.676 |
|
1974 |
Berg DK, Hall ZW. Fate of alpha-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle. Science (New York, N.Y.). 184: 473-5. PMID 4819679 |
0.664 |
|
1974 |
Stuart AE, Hudspeth AJ, Hall ZW. Vital staining of specific monoamine-containing cells in the leech nervous system. Cell and Tissue Research. 153: 55-61. PMID 4140759 DOI: 10.1007/BF00225445 |
0.489 |
|
1973 |
Hall ZW. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle. Neurosciences Research Program Bulletin. 11: 237-41. PMID 4736779 |
0.402 |
|
1972 |
Berg DK, Kelly RB, Sargent PB, Williamson P, Hall ZW. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proceedings of the National Academy of Sciences of the United States of America. 69: 147-51. PMID 4333037 DOI: 10.1073/Pnas.69.1.147 |
0.796 |
|
1971 |
Hall ZW, Kelly RB. Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature: New Biology. 232: 62-3. PMID 4327744 |
0.582 |
|
1970 |
Hall ZW, Bownds MD, Kravitz EA. The metabolism of gamma aminobutyric acid in the lobster nervous system. Enzymes in single excitatory and inhibitory axons. The Journal of Cell Biology. 46: 290-9. PMID 5449177 DOI: 10.1083/jcb.46.2.290 |
0.484 |
|
1969 |
Hall ZW, Lehman IR. Enzymatic joining of polynucleotides. VI. Activity of a synthetic adenylylated polydeoxynucleotide in the reaction. The Journal of Biological Chemistry. 244: 43-7. PMID 4304297 |
0.437 |
|
1968 |
Hall ZW, Lehman IR. An in vitro transversion by a mutationally altered T4-induced DNA polymerase. Journal of Molecular Biology. 36: 321-33. PMID 4939629 |
0.415 |
|
1968 |
Olivera BM, Hall ZW, Anraku Y, Chien JR, Lehman IR. On the mechanism of the polynucleotide joining reaction. Cold Spring Harbor Symposia On Quantitative Biology. 33: 27-34. PMID 4306816 DOI: 10.1101/Sqb.1968.033.01.008 |
0.57 |
|
1968 |
Olivera BM, Hall ZW, Lehman IR. Enzymatic joining of polynucleotides, V. A DNA-adenylate intermediate in the polynucleotide-joining reaction. Proceedings of the National Academy of Sciences of the United States of America. 61: 237-44. PMID 4301588 DOI: 10.1073/Pnas.61.1.237 |
0.583 |
|
1967 |
Hall ZW, Kravitz EA. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system. II. Succinic semialdehyde dehydrogenase. Journal of Neurochemistry. 14: 55-61. PMID 4289447 DOI: 10.1111/j.1471-4159.1967.tb09493.x |
0.461 |
|
1967 |
Hall ZW, Kravitz EA. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase. Journal of Neurochemistry. 14: 45-54. PMID 4289446 |
0.462 |
|
1966 |
Otsuka M, Iversen LL, Hall ZW, Kravitz EA. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proceedings of the National Academy of Sciences of the United States of America. 56: 1110-5. PMID 5230136 |
0.48 |
|
1965 |
Kravitz EA, Molinoff PB, Hall ZW. A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory and inhibitory axons. Proceedings of the National Academy of Sciences of the United States of America. 54: 778-82. PMID 5217457 |
0.599 |
|
Show low-probability matches. |