Year |
Citation |
Score |
2022 |
Huertas MA, Newton AJH, McDougal RA, Sacktor TC, Shouval HZ. Conditions for synaptic specificity during the maintenance phase of synaptic plasticity. Eneuro. PMID 35443991 DOI: 10.1523/ENEURO.0064-22.2022 |
0.405 |
|
2021 |
Cone I, Shouval HZ. Behavioral Time Scale Plasticity of Place Fields: Mathematical Analysis. Frontiers in Computational Neuroscience. 15: 640235. PMID 33732128 DOI: 10.3389/fncom.2021.640235 |
0.385 |
|
2020 |
Shouval HZ. Decision letter: A unified computational model for cortical post-synaptic plasticity Elife. DOI: 10.7554/Elife.55714.Sa1 |
0.461 |
|
2016 |
Huertas MA, Schwettmann SE, Shouval HZ. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces. Frontiers in Synaptic Neuroscience. 8: 37. PMID 28018206 DOI: 10.3389/Fnsyn.2016.00037 |
0.446 |
|
2015 |
He K, Huertas M, Hong SZ, Tie X, Hell JW, Shouval H, Kirkwood A. Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron. 88: 528-38. PMID 26593091 DOI: 10.1016/J.Neuron.2015.09.037 |
0.526 |
|
2015 |
Huertas MA, Hussain Shuler MG, Shouval HZ. A Simple Network Architecture Accounts for Diverse Reward Time Responses in Primary Visual Cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 12659-72. PMID 26377457 DOI: 10.1523/Jneurosci.0871-15.2015 |
0.412 |
|
2015 |
Veliz-Cuba A, Shouval HZ, Josić K, Kilpatrick ZP. Networks that learn the precise timing of event sequences. Journal of Computational Neuroscience. PMID 26334992 DOI: 10.1007/S10827-015-0574-4 |
0.408 |
|
2015 |
Jalil SJ, Sacktor TC, Shouval HZ. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. Learning & Memory (Cold Spring Harbor, N.Y.). 22: 344-53. PMID 26077687 DOI: 10.1101/Lm.038844.115 |
0.431 |
|
2015 |
Namboodiri VM, Huertas MA, Monk KJ, Shouval HZ, Hussain Shuler MG. Visually cued action timing in the primary visual cortex. Neuron. 86: 319-30. PMID 25819611 DOI: 10.1016/J.Neuron.2015.02.043 |
0.36 |
|
2014 |
Shouval HZ, Hussain Shuler MG, Agarwal A, Gavornik JP. What does scalar timing tell us about neural dynamics? Frontiers in Human Neuroscience. 8: 438. PMID 24994976 DOI: 10.3389/Fnhum.2014.00438 |
0.753 |
|
2014 |
Flynn J, Tandon N, Shouval H. Neural representation of interval timing using electrocorticography Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-P46 |
0.362 |
|
2014 |
Huertas MA, Schwettmann S, Kirkwood A, Shouval H. Stable reinforcement learning via temporal competition between LTP and LTD traces Bmc Neuroscience. 15. DOI: 10.1186/1471-2202-15-S1-O12 |
0.495 |
|
2014 |
Heidelberger R, Shouval H, Zucker RS, Byrne JH. Synaptic Plasticity From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience: Third Edition. 533-561. DOI: 10.1016/B978-0-12-397179-1.00018-X |
0.392 |
|
2013 |
Shouval HZ, Agarwal A, Gavornik JP. Scaling of perceptual errors can predict the shape of neural tuning curves. Physical Review Letters. 110: 168102. PMID 23679640 DOI: 10.1103/Physrevlett.110.168102 |
0.735 |
|
2013 |
Huertas MA, Shuler M, Shouval HZ. Plasticity of network dynamics as observed experimentally requires heterogeneity of the network connectivity pattern Bmc Neuroscience. 14: P360. DOI: 10.1186/1471-2202-14-S1-P360 |
0.47 |
|
2012 |
Agarwal A, Adams R, Castellani GC, Shouval HZ. On the precision of quasi steady state assumptions in stochastic dynamics. The Journal of Chemical Physics. 137: 044105. PMID 22852595 DOI: 10.1063/1.4731754 |
0.318 |
|
2012 |
Shouval HZ, Agarwal A, Gavornik J. What does Weber’s law tell us about spike statistics? Bmc Neuroscience. 13. DOI: 10.1186/1471-2202-13-S1-P136 |
0.315 |
|
2011 |
Shouval HZ. What is the appropriate description level for synaptic plasticity? Proceedings of the National Academy of Sciences of the United States of America. 108: 19103-4. PMID 22089234 DOI: 10.1073/Pnas.1117027108 |
0.527 |
|
2011 |
Rachmuth G, Shouval HZ, Bear MF, Poon CS. A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. Proceedings of the National Academy of Sciences of the United States of America. 108: E1266-74. PMID 22089232 DOI: 10.1073/Pnas.1106161108 |
0.683 |
|
2011 |
Gavornik JP, Shouval HZ. A network of spiking neurons that can represent interval timing: mean field analysis. Journal of Computational Neuroscience. 30: 501-13. PMID 20830512 DOI: 10.1007/S10827-010-0275-Y |
0.789 |
|
2011 |
Shouval HZ, Gavornik JP. A single spiking neuron that can represent interval timing: analysis, plasticity and multi-stability. Journal of Computational Neuroscience. 30: 489-99. PMID 20827572 DOI: 10.1007/S10827-010-0273-0 |
0.786 |
|
2010 |
Shouval HZ, Wang SS, Wittenberg GM. Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience. 4. PMID 20725599 DOI: 10.3389/Fncom.2010.00019 |
0.567 |
|
2010 |
Agarwal A, Aslam N, Shouval HZ. An improved translational switch for long term maintenance of synaptic plasticity Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P186 |
0.391 |
|
2010 |
Aslam N, Shouval HZ. Can a local, PKMξ dependent translational switch account for the maintenance of synaptic plasticity? Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P109 |
0.447 |
|
2010 |
Gvornik J, Shouval H. Scalar timing law for interval timing in a plastic network of spiking neurons Bmc Neuroscience. 11. DOI: 10.1186/1471-2202-11-S1-P104 |
0.329 |
|
2009 |
Blais BS, Cooper LN, Shouval HZ. Effect of correlated lateral geniculate nucleus firing rates on predictions for monocular eye closure versus monocular retinal inactivation. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 80: 061915. PMID 20365198 DOI: 10.1103/Physreve.80.061915 |
0.811 |
|
2009 |
Kalantzis G, Shouval HZ. Structural plasticity can produce metaplasticity. Plos One. 4: e8062. PMID 19956610 DOI: 10.1371/Journal.Pone.0008062 |
0.518 |
|
2009 |
Aslam N, Kubota Y, Wells D, Shouval HZ. Translational switch for long-term maintenance of synaptic plasticity. Molecular Systems Biology. 5: 284. PMID 19536207 DOI: 10.1038/Msb.2009.38 |
0.372 |
|
2009 |
Gavornik JP, Shuler MG, Loewenstein Y, Bear MF, Shouval HZ. Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 106: 6826-31. PMID 19346478 DOI: 10.1073/Pnas.0901835106 |
0.824 |
|
2009 |
Kalantzis G, Kubota Y, Shouval HZ. Evaluating statistical methods used to estimate the number of postsynaptic receptors. Journal of Neuroscience Methods. 178: 393-401. PMID 19162073 DOI: 10.1016/J.Jneumeth.2008.12.026 |
0.385 |
|
2009 |
Shouval H. Maintenance of synaptic plasticity Scholarpedia. 4: 1606. DOI: 10.4249/Scholarpedia.1606 |
0.492 |
|
2008 |
Blais BS, Frenkel MY, Kuindersma SR, Muhammad R, Shouval HZ, Cooper LN, Bear MF. Recovery from monocular deprivation using binocular deprivation. Journal of Neurophysiology. 100: 2217-24. PMID 18650311 DOI: 10.1152/Jn.90411.2008 |
0.817 |
|
2008 |
Yu X, Shouval HZ, Knierim JJ. A biophysical model of synaptic plasticity and metaplasticity can account for the dynamics of the backward shift of hippocampal place fields. Journal of Neurophysiology. 100: 983-92. PMID 18509078 DOI: 10.1152/Jn.01256.2007 |
0.541 |
|
2008 |
Kalantzis G, Kubota Y, Shouval HZ. Modeling stochastic calcium dynamics in the dendritic spines: a hybrid algorithm Bmc Neuroscience. 9: P86. DOI: 10.1186/1471-2202-9-S1-P86 |
0.342 |
|
2008 |
Kalantzis G, Shouval HZ. Spatiotemporal molecular dynamics and synaptic plasticity Bmc Neuroscience. 9. DOI: 10.1186/1471-2202-9-S1-P103 |
0.454 |
|
2007 |
Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ. Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. Journal of Neurophysiology. 97: 375-86. PMID 17035360 DOI: 10.1152/Jn.00895.2006 |
0.805 |
|
2007 |
Shouval H. Models of synaptic plasticity Scholarpedia. 2: 1605. DOI: 10.4249/Scholarpedia.1605 |
0.502 |
|
2007 |
Aslam N, Shouval H. Long term maintenance of synaptic plasticity via CPEB mediated local translation control at synapses Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P96 |
0.424 |
|
2007 |
Kalantzis G, Aslam N, Shouval HZ. Spatiotemporal dynamics of calcium and calmodulin at the spine Bmc Neuroscience. 8: P92. DOI: 10.1186/1471-2202-8-S2-P92 |
0.439 |
|
2007 |
Gavornik JP, Loewenstein Y, Shouval HZ. A network model that can learn reward timing using reinforced expression of synaptic plasticity Bmc Neuroscience. 8. DOI: 10.1186/1471-2202-8-S2-P103 |
0.47 |
|
2006 |
Shah NT, Yeung LC, Cooper LN, Cai Y, Shouval HZ. A biophysical basis for the inter-spike interaction of spike-timing-dependent plasticity. Biological Cybernetics. 95: 113-21. PMID 16691393 DOI: 10.1007/S00422-006-0071-Y |
0.805 |
|
2006 |
Rittenhouse CD, Siegler BA, Voelker CC, Voelker CA, Shouval HZ, Paradiso MA, Bear MF. Stimulus for rapid ocular dominance plasticity in visual cortex. Journal of Neurophysiology. 95: 2947-50. PMID 16481452 DOI: 10.1152/Jn.01328.2005 |
0.752 |
|
2006 |
Rittenhouse CD, Siegler BA, Voelker CC, Shouval HZ, Paradiso MA, Bear MF. Erratum: Orientation-selective adaptation to first- and second-order patterns in human visual cortex (Journal of Neurophysiology (February 2006) 95, (862-881) DOI: 10.1152/jn.00668.2005) Journal of Neurophysiology. 96. DOI: 10.1152/Jn.00517.2006 |
0.735 |
|
2006 |
Yu X, Knierim JJ, Lee I, Shouval HZ. Simulating place field dynamics using spike timing-dependent plasticity Neurocomputing. 69: 1253-1259. DOI: 10.1016/J.Neucom.2005.12.087 |
0.406 |
|
2005 |
Shouval HZ. Clusters of interacting receptors can stabilize synaptic efficacies. Proceedings of the National Academy of Sciences of the United States of America. 102: 14440-5. PMID 16189022 DOI: 10.1073/Pnas.0506934102 |
0.391 |
|
2005 |
Castellani GC, Quinlan EM, Bersani F, Cooper LN, Shouval HZ. A model of bidirectional synaptic plasticity: from signaling network to channel conductance. Learning & Memory (Cold Spring Harbor, N.Y.). 12: 423-32. PMID 16027175 DOI: 10.1101/Lm.80705 |
0.771 |
|
2005 |
Shouval HZ, Kalantzis G. Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology. 93: 1069-73. PMID 15385596 DOI: 10.1152/Jn.00504.2004 |
0.537 |
|
2004 |
Yeung LC, Shouval HZ, Blais BS, Cooper LN. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of Sciences of the United States of America. 101: 14943-8. PMID 15466713 DOI: 10.1073/Pnas.0405555101 |
0.816 |
|
2004 |
Yeung LC, Castellani GC, Shouval HZ. Analysis of the intraspinal calcium dynamics and its implications for the plasticity of spiking neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. 69: 011907. PMID 14995647 DOI: 10.1103/Physreve.69.011907 |
0.831 |
|
2003 |
Yeung LC, Blais BS, Cooper LN, Shouval HZ. Calcium as the associative signal for a model of Hebbian plasticity: Application to multi-input environments Neurocomputing. 52: 437-440. DOI: 10.1016/S0925-2312(02)00866-4 |
0.815 |
|
2002 |
Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN. Converging evidence for a simplified biophysical model of synaptic plasticity. Biological Cybernetics. 87: 383-91. PMID 12461628 DOI: 10.1007/S00422-002-0362-X |
0.805 |
|
2002 |
Shouval HZ, Bear MF, Cooper LN. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99: 10831-6. PMID 12136127 DOI: 10.1073/Pnas.152343099 |
0.798 |
|
2001 |
Castellani GC, Quinlan EM, Cooper LN, Shouval HZ. A biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America. 98: 12772-7. PMID 11675507 DOI: 10.1073/Pnas.201404598 |
0.767 |
|
2001 |
Philpot BD, Sekhar AK, Shouval HZ, Bear MF. Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron. 29: 157-69. PMID 11182088 DOI: 10.1016/S0896-6273(01)00187-8 |
0.673 |
|
2000 |
Lee AB, Blais B, Shouval HZ, Cooper LN. Statistics of lateral geniculate nucleus (LGN) activity determine the segregation of ON/OFF subfields for simple cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 97: 12875-9. PMID 11070095 DOI: 10.1073/Pnas.97.23.12875 |
0.791 |
|
2000 |
Blais B, Cooper LN, Shouval H. Formation of direction selectivity in natural scene environments. Neural Computation. 12: 1057-66. PMID 10905808 DOI: 10.1162/089976600300015501 |
0.775 |
|
2000 |
Shouval HZ, Goldberg DH, Jones JP, Beckerman M, Cooper LN. Structured long-range connections can provide a scaffold for orientation maps. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 20: 1119-28. PMID 10648717 DOI: 10.1523/Jneurosci.20-03-01119.2000 |
0.746 |
|
1999 |
Rittenhouse CD, Shouval HZ, Paradiso MA, Bear MF. Monocular deprivation induces homosynaptic long-term depression in visual cortex. Nature. 397: 347-50. PMID 9950426 DOI: 10.1038/16922 |
0.771 |
|
1999 |
Blais BS, Shouval HZ, Cooper LN. The role of presynaptic activity in monocular deprivation: comparison of homosynaptic and heterosynaptic mechanisms. Proceedings of the National Academy of Sciences of the United States of America. 96: 1083-7. PMID 9927697 DOI: 10.1073/Pnas.96.3.1083 |
0.824 |
|
1999 |
Goldberg DH, Shouval H, Cooper LN. Lateral connectivity as a scaffold for developing orientation preference maps Neurocomputing. 26: 381-387. DOI: 10.1016/S0925-2312(99)00028-4 |
0.738 |
|
1998 |
Artun OB, Shouval HZ, Cooper LN. The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 95: 11999-2003. PMID 9751779 DOI: 10.1073/Pnas.95.20.11999 |
0.767 |
|
1998 |
Blais BS, Intrator N, Shouval HZ, Cooper LN. Receptive Field Formation in Natural Scene Environments. Comparison of Single-Cell Learning Rules. Neural Computation. 10: 1797-1813. PMID 9744898 |
0.79 |
|
1998 |
Huynh QQ, Cooper LN, Intrator N, Shouval H. Classification of underwater mammals using feature extraction based on time-frequency analysis and bcm theory Ieee Transactions On Signal Processing. 46: 1202-1207. DOI: 10.1109/78.668783 |
0.737 |
|
1998 |
Blais BS, Intrator N, Shouval H, Cooper LN. Receptive Field Formation in Natural Scene Environments: Comparison of Single-Cell Learning Rules Neural Computation. 10: 1797-1813. |
0.773 |
|
1997 |
Shouval H, Intrator N, Cooper LN. BCM network develops orientation selectivity and ocular dominance in natural scene environment. Vision Research. 37: 3339-42. PMID 9425548 DOI: 10.1016/S0042-6989(97)00087-4 |
0.786 |
|
1996 |
Shouval H, Cooper LN. Organization of receptive fields in networks with Hebbian learning: the connection between synaptic and phenomenological models. Biological Cybernetics. 74: 439-47. PMID 8991459 DOI: 10.1007/Bf00206710 |
0.713 |
|
1996 |
Shouval H, Intrator N, Law CC, Cooper LN. Effect of binocular cortical misalignment on ocular dominance and orientation selectivity. Neural Computation. 8: 1021-40. PMID 8697227 DOI: 10.1162/Neco.1996.8.5.1021 |
0.803 |
|
1996 |
Shouval H, Liu Y. Principal component neurons in a realistic visual environment Network: Computation in Neural Systems. 7: 501-515. DOI: 10.1088/0954-898X_7_3_003 |
0.366 |
|
1994 |
Liu Y, Shouval H. Localized principal components of natural images-an analytic solution Network: Computation in Neural Systems. 5: 317-324. DOI: 10.1088/0954-898X_5_2_012 |
0.343 |
|
1991 |
Shouval H, Shariv I, Grossman T, Friesem AA, Domany E. AN ALL-OPTICAL HOPFIELD NETWORK: THEORY AND EXPERIMENT International Journal of Neural Systems. 1: 355-360. DOI: 10.1142/S012906579100039X |
0.457 |
|
Show low-probability matches. |