Year |
Citation |
Score |
2024 |
Kawatake-Kuno A, Li H, Inaba H, Hikosaka M, Ishimori E, Ueki T, Garkun Y, Morishita H, Narumiya S, Oishi N, Ohtsuki G, Murai T, Uchida S. Sustained antidepressant effects of ketamine metabolite involve GABAergic inhibition-mediated molecular dynamics in aPVT glutamatergic neurons. Neuron. PMID 38377990 DOI: 10.1016/j.neuron.2024.01.023 |
0.745 |
|
2023 |
Macpherson T, Niwa M, Morishita H, Hikida T. Editorial: Circuit, molecular, and developmental mechanisms in decision-making behavior. Frontiers in Neuroscience. 17: 1192237. PMID 37179551 DOI: 10.3389/fnins.2023.1192237 |
0.46 |
|
2021 |
Norman KJ, Bateh J, Maccario P, Cho C, Caro K, Nishioka T, Koike H, Morishita H. Frontal-Sensory Cortical Projections Become Dispensable for Attentional Performance Upon a Reduction of Task Demand in Mice. Frontiers in Neuroscience. 15: 775256. PMID 35087372 DOI: 10.3389/fnins.2021.775256 |
0.721 |
|
2021 |
Norman KJ, Koike H, McCraney SE, Garkun Y, Bateh J, Falk EN, Im S, Caro K, Demars MP, Morishita H. Chemogenetic suppression of anterior cingulate cortical neurons projecting to the visual cortex disrupts attentional behavior in mice. Neuropsychopharmacology Reports. PMID 33955711 DOI: 10.1002/npr2.12176 |
0.787 |
|
2021 |
Falk EN, Norman KJ, Garkun Y, Demars MP, Im S, Taccheri G, Short J, Caro K, McCraney SE, Cho C, Smith MR, Lin HM, Koike H, Bateh J, Maccario P, ... ... Morishita H, et al. Nicotinic regulation of local and long-range input balance drives top-down attentional circuit maturation. Science Advances. 7. PMID 33674307 DOI: 10.1126/sciadv.abe1527 |
0.774 |
|
2021 |
Norman KJ, Riceberg JS, Koike H, Bateh J, McCraney SE, Caro K, Kato D, Liang A, Yamamuro K, Flanigan ME, Kam K, Falk EN, Brady DM, Cho C, Sadahiro M, ... ... Morishita H, et al. Post-error recruitment of frontal sensory cortical projections promotes attention in mice. Neuron. PMID 33609483 DOI: 10.1016/j.neuron.2021.02.001 |
0.734 |
|
2020 |
Yamamuro K, Bicks LK, Leventhal MB, Kato D, Im S, Flanigan ME, Garkun Y, Norman KJ, Caro K, Sadahiro M, Kullander K, Akbarian S, Russo SJ, Morishita H. A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice. Nature Neuroscience. PMID 32868932 DOI: 10.1038/S41593-020-0695-6 |
0.773 |
|
2020 |
Nabel EM, Garkun Y, Koike H, Sadahiro M, Liang A, Norman KJ, Taccheri G, Demars MP, Im S, Caro K, Lopez S, Bateh J, Hof PR, Clem RL, Morishita H. Adolescent frontal top-down neurons receive heightened local drive to establish adult attentional behavior in mice. Nature Communications. 11: 3983. PMID 32770078 DOI: 10.1038/S41467-020-17787-0 |
0.779 |
|
2020 |
Sadahiro M, Demars MP, Burman P, Yevoo P, Zimmer A, Morishita H. Activation of somatostatin interneurons by nicotinic modulator Lypd6 enhances plasticity and functional recovery in the adult mouse visual cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 32467358 DOI: 10.1523/Jneurosci.1373-19.2020 |
0.431 |
|
2020 |
Bicks LK, Yamamuro K, Flanigan ME, Kim JM, Kato D, Lucas EK, Koike H, Peng MS, Brady DM, Chandrasekaran S, Norman KJ, Smith MR, Clem RL, Russo SJ, Akbarian S, ... Morishita H, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nature Communications. 11: 1003. PMID 32081848 DOI: 10.1038/S41467-020-14740-Z |
0.696 |
|
2020 |
Bicks L, Yamamuro K, Flanigan M, Lucas E, Koike H, Kato D, Russo S, Akbarian S, Morishita H. S189. Prefrontal Parvalbumin Interneurons Require Juvenile Social Experience To Establish Adult Social Behavior Schizophrenia Bulletin. 46. DOI: 10.1093/Schbul/Sbaa031.255 |
0.309 |
|
2020 |
Morishita H. Experience-Dependent Maturation of Prefrontal Circuitry in Control of Social Behavior Biological Psychiatry. 87: S32. DOI: 10.1016/J.Biopsych.2020.02.104 |
0.311 |
|
2019 |
Peña CJ, Smith M, Ramakrishnan A, Cates HM, Bagot RC, Kronman HG, Patel B, Chang AB, Purushothaman I, Dudley J, Morishita H, Shen L, Nestler EJ. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications. 10: 5098. PMID 31704941 DOI: 10.1038/S41467-019-13085-6 |
0.333 |
|
2019 |
Kana V, Desland FA, Casanova-Acebes M, Ayata P, Badimon A, Nabel E, Yamamuro K, Sneeboer M, Tan IL, Flanigan ME, Rose SA, Chang C, Leader A, Le Bourhis H, Sweet ES, ... ... Morishita H, et al. CSF-1 controls cerebellar microglia and is required for motor function and social interaction. The Journal of Experimental Medicine. PMID 31350310 DOI: 10.1084/Jem.20182037 |
0.311 |
|
2018 |
Smith MR, Readhead B, Dudley JT, Morishita H. Critical period plasticity-related transcriptional aberrations in schizophrenia and bipolar disorder. Schizophrenia Research. PMID 30442475 DOI: 10.1016/J.Schres.2018.10.021 |
0.314 |
|
2018 |
Smith MR, Yevoo P, Sadahiro M, Austin C, Amarasiriwardena C, Awawda M, Arora M, Dudley JT, Morishita H. Integrative bioinformatics identifies postnatal lead (Pb) exposure disrupts developmental cortical plasticity. Scientific Reports. 8: 16388. PMID 30401819 DOI: 10.1038/S41598-018-34592-4 |
0.31 |
|
2018 |
Morishita H. 185. A Developmental Circuit Milestone for Prefrontal Top-Down Control of Sensory Processing Biological Psychiatry. 83: S74. DOI: 10.1016/J.Biopsych.2018.02.204 |
0.325 |
|
2017 |
Jiang Y, Loh YE, Rajarajan P, Hirayama T, Liao W, Kassim BS, Javidfar B, Hartley BJ, Kleofas L, Park RB, Labonte B, Ho SM, Chandrasekaran S, Do C, Ramirez BR, ... ... Morishita H, et al. The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nature Genetics. PMID 28671686 DOI: 10.1038/Ng.3906 |
0.538 |
|
2017 |
Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry. PMID 28322275 DOI: 10.1038/Mp.2017.47 |
0.589 |
|
2016 |
Sadahiro M, Sajo M, Morishita H. Nicotinic Regulation of Experience-Dependent Plasticity in Visual Cortex. Journal of Physiology, Paris. PMID 27840212 DOI: 10.1016/J.Jphysparis.2016.11.003 |
0.376 |
|
2016 |
Sajo M, Ellis-Davies G, Morishita H. Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 9472-8. PMID 27605620 DOI: 10.1523/Jneurosci.0580-16.2016 |
0.389 |
|
2016 |
Mitchell AC, Javidfar B, Bicks LK, Neve R, Garbett K, Lander SS, Mirnics K, Morishita H, Wood MA, Jiang Y, Gaisler-Salomon I, Akbarian S. Longitudinal assessment of neuronal 3D genomes in mouse prefrontal cortex. Nature Communications. 7: 12743. PMID 27597321 DOI: 10.1038/Ncomms12743 |
0.349 |
|
2016 |
Lucas EK, Jegarl AM, Morishita H, Clem RL. Multimodal and Site-Specific Plasticity of Amygdala Parvalbumin Interneurons after Fear Learning. Neuron. PMID 27427462 DOI: 10.1016/J.Neuron.2016.06.032 |
0.363 |
|
2015 |
Bicks LK, Koike H, Akbarian S, Morishita H. Prefrontal Cortex and Social Cognition in Mouse and Man. Frontiers in Psychology. 6: 1805. PMID 26635701 DOI: 10.3389/Fpsyg.2015.01805 |
0.339 |
|
2015 |
Bukhari N, Burman PN, Hussein A, Demars MP, Sadahiro M, Brady DM, Tsirka SE, Russo SJ, Morishita H. Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 35: 12693-702. PMID 26377459 DOI: 10.1523/Jneurosci.4315-14.2015 |
0.709 |
|
2015 |
Koike H, Demars MP, Short JA, Nabel EM, Akbarian S, Baxter MG, Morishita H. Chemogenetic Inactivation of Dorsal Anterior Cingulate Cortex Neurons Disrupts Attentional Behavior in Mouse. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. PMID 26224620 DOI: 10.1038/Npp.2015.229 |
0.468 |
|
2015 |
Morishita H, Kundakovic M, Bicks L, Mitchell A, Akbarian S. Interneuron epigenomes during the critical period of cortical plasticity: Implications for schizophrenia. Neurobiology of Learning and Memory. PMID 25849095 DOI: 10.1016/J.Nlm.2015.03.005 |
0.372 |
|
2015 |
Morishita H, Cabungcal JH, Chen Y, Do KQ, Hensch TK. Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biological Psychiatry. PMID 25758057 DOI: 10.1016/J.Biopsych.2014.12.026 |
0.597 |
|
2014 |
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Molecular Brain. 7: 75. PMID 25359633 DOI: 10.1186/S13041-014-0075-9 |
0.381 |
|
2013 |
Nabel EM, Morishita H. Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Frontiers in Psychiatry. 4: 146. PMID 24273519 DOI: 10.3389/Fpsyt.2013.00146 |
0.375 |
|
2013 |
Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, Do KQ. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proceedings of the National Academy of Sciences of the United States of America. 110: 9130-5. PMID 23671099 DOI: 10.1073/Pnas.1300454110 |
0.588 |
|
2010 |
Morishita H, Miwa JM, Heintz N, Hensch TK. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science (New York, N.Y.). 330: 1238-40. PMID 21071629 DOI: 10.1126/Science.1195320 |
0.638 |
|
2010 |
Morishita H, Hensch T. Molecular “brakes” limit adult plasticity in mouse visual cortex Neuroscience Research. 68: e43. DOI: 10.1016/J.Neures.2010.07.436 |
0.605 |
|
2008 |
Morishita H, Hensch TK. Critical period revisited: impact on vision. Current Opinion in Neurobiology. 18: 101-7. PMID 18534841 DOI: 10.1016/J.Conb.2008.05.009 |
0.601 |
|
2007 |
Morishita H, Yagi T. Protocadherin family: diversity, structure, and function. Current Opinion in Cell Biology. 19: 584-92. PMID 17936607 DOI: 10.1016/J.Ceb.2007.09.006 |
0.479 |
|
2006 |
Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, Akutsu H, Yamaguchi T, Yagi T, Ikegami T. Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. The Journal of Biological Chemistry. 281: 33650-63. PMID 16916795 DOI: 10.1074/Jbc.M603298200 |
0.502 |
|
2005 |
Umitsu M, Morishita H, Murata Y, Udaka K, Akutsu H, Yagi T, Ikegami T. 1H, 13C and 15N resonance assignments of the first cadherin domain of Cadherin-related neuronal receptor (CNR)/protocadherin alpha. Journal of Biomolecular Nmr. 31: 365-6. PMID 15929006 DOI: 10.1007/S10858-005-2450-4 |
0.492 |
|
2004 |
Morishita H, Kawaguchi M, Murata Y, Seiwa C, Hamada S, Asou H, Yagi T. Myelination triggers local loss of axonal CNR/protocadherin alpha family protein expression. The European Journal of Neuroscience. 20: 2843-7. PMID 15579137 DOI: 10.1111/J.1460-9568.2004.03803.X |
0.48 |
|
2004 |
Morishita H, Murata Y, Esumi S, Hamada S, Yagi T. CNR/Pcdhalpha family in subplate neurons, and developing cortical connectivity. Neuroreport. 15: 2595-9. PMID 15570159 DOI: 10.1097/00001756-200412030-00007 |
0.559 |
|
2004 |
Tada MN, Senzaki K, Tai Y, Morishita H, Tanaka YZ, Murata Y, Ishii Y, Asakawa S, Shimizu N, Sugino H, Yagi T. Genomic organization and transcripts of the zebrafish Protocadherin genes. Gene. 340: 197-211. PMID 15475161 DOI: 10.1016/J.Gene.2004.07.014 |
0.458 |
|
2004 |
Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T. Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. The Journal of Biological Chemistry. 279: 49508-16. PMID 15347688 DOI: 10.1074/Jbc.M408771200 |
0.465 |
|
Show low-probability matches. |