Year |
Citation |
Score |
2020 |
Ito S, Si Y, Feldheim DA, Litke AM. Spectral cues are necessary to encode azimuthal auditory space in the mouse superior colliculus. Nature Communications. 11: 1087. PMID 32107385 DOI: 10.1038/S41467-020-14897-7 |
0.364 |
|
2018 |
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Frontiers in Neural Circuits. 12: 10. PMID 29487505 DOI: 10.3389/Fncir.2018.00010 |
0.46 |
|
2017 |
Ito S, Feldheim DA, Litke AM. Segregation of visual response properties in the mouse superior colliculus and their modulation during locomotion. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. PMID 28760858 DOI: 10.1523/Jneurosci.3689-16.2017 |
0.367 |
|
2017 |
Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. Expression of transcription factors divide retinal ganglion cells into distinct classes. The Journal of Comparative Neurology. PMID 28078709 DOI: 10.1002/Cne.24172 |
0.395 |
|
2016 |
Shanks JA, Ito S, Schaevitz L, Yamada J, Chen B, Litke A, Feldheim DA. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 36: 5252-63. PMID 27170123 DOI: 10.1523/Jneurosci.4599-15.2016 |
0.489 |
|
2015 |
Owens MT, Feldheim DA, Stryker MP, Triplett JW. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps. Neuron. 87: 1261-73. PMID 26402608 DOI: 10.1016/j.neuron.2015.08.030 |
0.8 |
|
2015 |
Sweeney NT, James KN, Sales EC, Feldheim DA. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types. Developmental Neurobiology. 75: 584-93. PMID 25649160 DOI: 10.1002/Dneu.22265 |
0.606 |
|
2014 |
Sweeney NT, Tierney H, Feldheim DA. Tbr2 is required to generate a neural circuit mediating the pupillary light reflex. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 34: 5447-53. PMID 24741035 DOI: 10.1523/Jneurosci.0035-14.2014 |
0.417 |
|
2014 |
Triplett JW, Wei W, Gonzalez C, Sweeney NT, Huberman AD, Feller MB, Feldheim DA. Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Development. 9: 2. PMID 24495295 DOI: 10.1186/1749-8104-9-2 |
0.723 |
|
2013 |
Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annual Review of Neuroscience. 36: 51-77. PMID 23642132 DOI: 10.1146/annurev-neuro-062012-170341 |
0.534 |
|
2012 |
Triplett JW, Phan A, Yamada J, Feldheim DA. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 32: 5264-71. PMID 22496572 DOI: 10.1523/JNEUROSCI.0240-12.2012 |
0.767 |
|
2012 |
Triplett JW, Feldheim DA. Eph and ephrin signaling in the formation of topographic maps. Seminars in Cell & Developmental Biology. 23: 7-15. PMID 22044886 DOI: 10.1016/j.semcdb.2011.10.026 |
0.78 |
|
2012 |
Higenell V, Han SM, Feldheim DA, Scalia F, Ruthazer ES. Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis. Developmental Neurobiology. 72: 547-63. PMID 21656698 DOI: 10.1002/Dneu.20930 |
0.481 |
|
2011 |
Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, Sher A, Koulakov AA, Feldheim DA. Competition is a driving force in topographic mapping. Proceedings of the National Academy of Sciences of the United States of America. 108: 19060-5. PMID 22065784 DOI: 10.1073/Pnas.1102834108 |
0.765 |
|
2011 |
Osterhout JA, Josten N, Yamada J, Pan F, Wu SW, Nguyen PL, Panagiotakos G, Inoue YU, Egusa SF, Volgyi B, Inoue T, Bloomfield SA, Barres BA, Berson DM, Feldheim DA, et al. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron. 71: 632-9. PMID 21867880 DOI: 10.1016/J.Neuron.2011.07.006 |
0.447 |
|
2010 |
Feldheim DA, O'Leary DD. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harbor Perspectives in Biology. 2: a001768. PMID 20880989 DOI: 10.1101/cshperspect.a001768 |
0.593 |
|
2009 |
Stafford BK, Sher A, Litke AM, Feldheim DA. Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron. 64: 200-12. PMID 19874788 DOI: 10.1016/J.Neuron.2009.09.021 |
0.79 |
|
2009 |
Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA. Retinal input instructs alignment of visual topographic maps. Cell. 139: 175-85. PMID 19804762 DOI: 10.1016/j.cell.2009.08.028 |
0.828 |
|
2009 |
Clandinin TR, Feldheim DA. Making a visual map: mechanisms and molecules. Current Opinion in Neurobiology. 19: 174-80. PMID 19481440 DOI: 10.1016/j.conb.2009.04.011 |
0.453 |
|
2009 |
Scalia F, Currie JR, Feldheim DA. Eph/ephrin gradients in the retinotectal system of Rana pipiens: developmental and adult expression patterns. The Journal of Comparative Neurology. 514: 30-48. PMID 19260054 DOI: 10.1002/cne.21968 |
0.431 |
|
2008 |
Cang J, Wang L, Stryker MP, Feldheim DA. Roles of ephrin-as and structured activity in the development of functional maps in the superior colliculus. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 28: 11015-23. PMID 18945909 DOI: 10.1523/JNEUROSCI.2478-08.2008 |
0.729 |
|
2008 |
Jiao JW, Feldheim DA, Chen DF. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proceedings of the National Academy of Sciences of the United States of America. 105: 8778-83. PMID 18562299 DOI: 10.1073/pnas.0708861105 |
0.321 |
|
2008 |
Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron. 57: 511-23. PMID 18304481 DOI: 10.1016/J.Neuron.2007.12.025 |
0.805 |
|
2006 |
Pfeiffenberger C, Yamada J, Feldheim DA. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 26: 12873-84. PMID 17167078 DOI: 10.1523/Jneurosci.3595-06.2006 |
0.824 |
|
2006 |
Feldheim D, Pfeiffenberger C, Cang J, Stryker M. A combination of ephrin-As and neural activity is required for visual system mapping Developmental Biology. 295: 340. DOI: 10.1016/J.Ydbio.2006.04.055 |
0.786 |
|
2005 |
Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA. Ephrin-as guide the formation of functional maps in the visual cortex. Neuron. 48: 577-89. PMID 16301175 DOI: 10.1016/J.Neuron.2005.10.026 |
0.684 |
|
2005 |
Huberman AD, Murray KD, Warland DK, Feldheim DA, Chapman B. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nature Neuroscience. 8: 1013-21. PMID 16025110 DOI: 10.1038/nn1505 |
0.758 |
|
2005 |
Pfeiffenberger C, Cutforth T, Woods G, Yamada J, Rentería RC, Copenhagen DR, Flanagan JG, Feldheim DA. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nature Neuroscience. 8: 1022-7. PMID 16025107 DOI: 10.1038/Nn1508 |
0.781 |
|
2005 |
Ellsworth CA, Lyckman AW, Feldheim DA, Flanagan JG, Sur M. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets. The Journal of Comparative Neurology. 488: 140-51. PMID 15924339 DOI: 10.1002/cne.20602 |
0.663 |
|
2004 |
Bach H, Arango V, Feldheim D, Flanagan JG, Scalia F. Fiber order of the normal and regenerated optic tract of the frog (Rana Pipiens) Journal of Comparative Neurology. 477: 43-54. PMID 15281079 DOI: 10.1002/cne.20238 |
0.498 |
|
2004 |
Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nature Neuroscience. 7: 501-9. PMID 15107857 DOI: 10.1038/Nn1237 |
0.366 |
|
2004 |
Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, Yancopoulos GD, Flanagan JG. Loss-of-function analysis of EphA receptors in retinotectal mapping. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 24: 2542-50. PMID 15014130 DOI: 10.1523/Jneurosci.0239-03.2004 |
0.812 |
|
2003 |
Bach H, Feldheim DA, Flanagan JG, Scalia F. Persistence of graded EphA/Ephrin-A expression in the adult frog visual system. The Journal of Comparative Neurology. 467: 549-65. PMID 14624488 DOI: 10.1002/cne.10941 |
0.506 |
|
2001 |
Lyckman AW, Jhaveri S, Feldheim DA, Vanderhaeghen P, Flanagan JG, Sur M. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant. The Journal of Neuroscience : the Official Journal of the Society For Neuroscience. 21: 7684-90. PMID 11567058 DOI: 10.1523/Jneurosci.21-19-07684.2001 |
0.71 |
|
2000 |
Flanagan JG, Cheng HJ, Feldheim DA, Hattori M, Lu Q, Vanderhaeghen P. Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods in Enzymology. 327: 19-35. PMID 11044971 DOI: 10.1016/S0076-6879(00)27264-9 |
0.722 |
|
2000 |
Feldheim DA, Kim YI, Bergemann AD, Frisén J, Barbacid M, Flanagan JG. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron. 25: 563-74. PMID 10774725 DOI: 10.1016/S0896-6273(00)81060-0 |
0.613 |
|
2000 |
Feng G, Laskowski MB, Feldheim DA, Wang H, Lewis R, Frisen J, Flanagan JG, Sanes JR. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron. 25: 295-306. PMID 10719886 DOI: 10.1016/S0896-6273(00)80895-8 |
0.479 |
|
1998 |
Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisén J, Lu Q, Barbacid M, Flanagan JG. Topographic guidance labels in a sensory projection to the forebrain. Neuron. 21: 1303-13. PMID 9883724 DOI: 10.1016/S0896-6273(00)80650-9 |
0.829 |
|
1994 |
Feldheim D, Yoshimura K, Admon A, Schekman R. Structural and functional characterization of Sec66p, a new subunit of the polypeptide translocation apparatus in the yeast endoplasmic reticulum. Molecular Biology of the Cell. 4: 931-9. PMID 8257795 DOI: 10.1091/Mbc.4.9.931 |
0.49 |
|
1994 |
Feldheim D, Schekman R. Sec72p contributes to the selective recognition of signal peptides by the secretory polypeptide translocation complex. The Journal of Cell Biology. 126: 935-43. PMID 8051213 DOI: 10.1083/Jcb.126.4.935 |
0.474 |
|
1993 |
Brodsky JL, Hamamoto S, Feldheim D, Schekman R. Reconstitution of protein translocation from solubilized yeast membranes reveals topologically distinct roles for BiP and cytosolic Hsc70 Journal of Cell Biology. 120: 95-102. PMID 8416998 DOI: 10.1083/Jcb.120.1.95 |
0.593 |
|
1992 |
Feldheim D, Rothblatt J, Schekman R. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Molecular and Cellular Biology. 12: 3288-96. PMID 1620130 DOI: 10.1128/Mcb.12.7.3288 |
0.475 |
|
1991 |
Deshaies RJ, Sanders SL, Feldheim DA, Schekman R. Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature. 349: 806-8. PMID 2000150 DOI: 10.1038/349806A0 |
0.61 |
|
Show low-probability matches. |